Page	Line	Change				
10	-12	Change "bounded functions" to "continuous functions"				
11	4	Change "bounded functions" to "continuous functions"				
15	6	Change $\\|v\\|_{p, \infty}$ to $\\|v\\|_{\infty, w}$				
23	-9	angle between two vectors u and v in a real space V as follows:				
46	Exercise 2.2.5	Rewrite it as follows:				

Exercise 2.2.5 Let a linear operator $L: V \rightarrow W$ be nonsingular and map V onto W. Show that for each $f \in W$, the equation $L u=f$ has a unique solution $u \in V$.

Page	Line	Change
50	-3	Change " \leq " to " $<"$
53	6	Change to " $v(x)=\frac{1}{\lambda}[f(x)+c x] "$
54	Figure 2.1	The graph is incorrect; following is the correct graph

Page	Line	Change
62	Exercise 2.4.4	Append the following to the exercise.

More precisely, show that

$$
\sup _{v, \widetilde{v}}\left[\frac{\|v-\widetilde{v}\|}{\|v\|} \div \frac{\|w-\widetilde{w}\|}{\|w\|}\right]=\|L\|\left\|L^{-1}\right\|
$$

Page	Line	Change
71	Exercise 2.6.2	Change the exercise to the following:

Exercise 2.6.2 Define $K: L^{2}(0,1) \rightarrow L^{2}(0,1)$ by

$$
K f(x)=\int_{0}^{x} k(x, y) f(y) d y, \quad 0 \leq x \leq 1, \quad f \in L^{2}(0,1)
$$

with $k(x, y)$ continuous for $0 \leq y \leq x \leq 1$. Show K is a bounded operator. What is K^{*} ? To what extent can the assumption of continuity of $k(x, y)$ be made less restrictive?

Page	Line	Change				
104	9	$\left\|L_{n} v-L v\right\| \leq c h^{2}\left\\|v^{\prime \prime}\right\\|_{L^{1}(a, b)}$				
117	3	$f(x)=\frac{a_{0}}{2}+\sum_{j=1}^{\infty}\left[a_{j} \cos (j x)+b_{j} \sin (j x)\right]$				
124	Exercise 3.5.2	Change " $P \varphi_{j}=0$ " to " $\left(x, \varphi_{j}\right)=0$ "				
126	14	Change " $n \geq 1$ " to " $n>k$ "				
127	9	change "and if $x \notin$ " to "and if $\theta \notin$ "				
127	10	$D_{n}(\theta)=\frac{\sin \left(n+\frac{1}{2}\right) \theta}{\sin \frac{1}{2} \theta}$				
134	Exercise 4.1.2	Include the assumption that T is continuous				
134	Exercise 4.1.2	Change "coverges" to "converges"				
145	Exercise 4.2.8, line 4	where g is continuous, $h \in L^{1}(a, b)$, and $h(t) \geq 0$ a.e. Show that				
150	1	"Assume U and V are real Banach spaces. Let $F: K \subseteq$ "				
153	-1	$f\left(x_{1}, x_{2}\right)=\left\{\begin{array}{cl} \frac{x_{1} x_{2}^{3}}{x_{1}^{2}+x_{2}^{6}}, & \text { if }\left(x_{1} x_{2}\right) \neq(0,0) \\ 0, & \text { if }\left(x_{1} x_{2}\right)=(0,0) \end{array}\right.$				
154	Exercise 4.3.7	Change " $p \geq 2$ " to " $p \geq 1$ "				
154	Exercise 4.3.9	Let $A \in \mathcal{L}(V)$ be self-adjoint, V being a real Hilbert space. Define				
201	8	Change "Lebegue" to "Lebesgue"				
209	-1	Change $\frac{p}{d}$ to $\frac{d}{p}$				
210	3	Change $\frac{p}{d}$ to $\frac{d}{p}$				
211	-13	Change "Beore" to "Before"				
212	5	Change " $\\|u\\|_{k, p, \Omega}$ " to " $\\|v\\|_{k, p, \Omega}$ "				
353	Table 11.1	The first two entries for n should be 2 and 4				
397	13	"Since the collocation solution satisfies $u_{n}=P_{n} \widehat{u}_{n}, \ldots . "$				

