CORRECTIONS TO Theoretical Numerical Analysis

Page	Line	Change
10	-12	Change "bounded functions" to "continuous functions"
11	4	Change "bounded functions" to "continuous functions"
15	6	Change $ v _{p,\infty}$ to $ v _{\infty,w}$
23	-9	angle between two vectors u and v in a real space V as follows:
46	Exercise 2.2.5	Rewrite it as follows:

Exercise 2.2.5 Let a linear operator $L: V \to W$ be nonsingular and map V onto W. Show that for each $f \in W$, the equation Lu = f has a unique solution $u \in V$.

More precisely, show that

$$\sup_{v,\tilde{v}} \left[\frac{\|v - \tilde{v}\|}{\|v\|} \div \frac{\|w - \tilde{w}\|}{\|w\|} \right] = \|L\| \|L^{-1}\|$$

Page	Line	Change
71	Exercise 2.6.2	Change the exercise to the following:

Exercise 2.6.2 Define $K: L^2(0,1) \to L^2(0,1)$ by

$$Kf(x) = \int_0^x k(x,y)f(y)dy, \quad 0 \le x \le 1, \quad f \in L^2(0,1),$$

with k(x, y) continuous for $0 \le y \le x \le 1$. Show K is a bounded operator. What is K^* ? To what extent can the assumption of continuity of k(x, y) be made less restrictive?

Page	Line	Change
104	9	$ L_n v - Lv \le ch^2 \ v''\ _{L^1(a,b)}$
117	3	$f(x) = \frac{a_0}{2} + \sum_{j=1}^{\infty} \left[a_j \cos(jx) + b_j \sin(jx) \right]$
124	Exercise 3.5.2	Change " $P\varphi_i = 0$ " to " $(x, \varphi_i) = 0$ "
126	14	Change " $n \ge 1$ " to " $n > k$ "
127	9	change "and if $x \notin$ " to "and if $\theta \notin$ "
127	10	$D_n\left(heta ight) = rac{\sin\left(n+rac{1}{2} ight) heta}{\sinrac{1}{2} heta}$
134	Exercise 4.1.2	Include the assumption that T is continuous
134	Exercise $4.1.2$	Change "coverges" to "converges"
145	Exercise 4.2.8, line 4	where g is continuous, $h \in L^1(a, b)$, and $h(t) \ge 0$ a.e. Show that
150	1	"Assume U and V are real Banach spaces. Let $F: K \subseteq$ "
153	-1	$f(x_1, x_2) = \begin{cases} \frac{x_1 x_2^3}{x_1^2 + x_2^6}, & \text{if } (x_1 x_2) \neq (0, 0), \\ 0, & \text{if } (x_1 x_2) = (0, 0). \end{cases}$
154	Exercise 4.3.7	Change " $p \ge 2$ " to " $p \ge 1$ "
154	Exercise 4.3.9	Let $A \in \mathcal{L}(V)$ be self-adjoint, V being a real Hilbert space. Define
201	8	Change "Lebegue" to "Lebesgue"
209	-1	Change $\frac{p}{d}$ to $\frac{d}{p}$
210	3	Change $\frac{p}{d}$ to $\frac{d}{p}$
211	-13	Change "Beore" to "Before"
212	5	Change " $ u _{k,p,\Omega}$ " to " $ v _{k,p,\Omega}$ "
353	Table 11.1	The first two entries for n should be 2 and 4
397	13	"Since the collocation solution satisfies $u_n = P_n \hat{u}_n, \dots$ "