
TWO-POINT BVP

Consider the two-point boundary value problem of a

second-order linear equation:

Y 00(x) = p(x)Y 0(x) + q(x)Y (x) + r(x)

a � x � b
Y (a) = g1; Y (b) = g2

Assume the given functions p, q and r are continuous

on [a; b]. Unlike the initial value problem of the equa-

tion that always has a unique solution, the theory of

the two-point boundary value problem is more com-

plicated. We will assume the problem has a unique

smooth solution Y ; a su�cient condition for this is

q(x) > 0 for x 2 [a; b].

In general, we need to depend on numerical methods

to solve the problem.



FINITE DIFFERENCE METHOD

We derive a �nite di�erence scheme for the two-point

boundary value problem in three steps.

Step 1. Discretize the interval [a; b].

Let N be a positive integer, and divide the interval

[a; b] into N equal parts:

[a; b] = [x0; x1] [ [x1; x2] [ � � � [ [xN�1; xN ]

Let h = (b � a)=N , called stepsize or gridsize. xi =
a+ i h, 0 � i � N , are grid (or node) points.

We use the notation pi = p(xi), qi = q(xi), ri =

r(xi), 0 � i � N . For 0 � i � N , yi is numerical

approximation of Yi = Y (xi).



Step 2. Discretize the di�erential equation at the in-

terior node points x1; : : : ; xN�1.
Recall

Y 0(xi) =
Yi+1 � Yi�1

2h
+O(h2)

Y 00(xi) =
Yi+1 � 2Yi + Yi�1

h2
+O(h2)

Then the di�erential equation at x = xi becomes

Yi+1 � 2Yi + Yi�1
h2

= pi
Yi+1 � Yi�1

2h
+ qiYi + ri +O(h

2)

Dropping the O(h2) term, replacing Yi by yi, we ob-

tain the di�erence equations

yi+1 � 2 yi + yi�1
h2

= pi
yi+1 � yi�1

2h
+ qiyi + ri

for 1 � i � N � 1. So
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Step 3. Treatment of boundary conditions.

Use

y0 = g1; yN = g2

Then the di�erence equation with i = 1 becomes
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and that with i = N � 1
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Finally, the �nite di�erence system is

Ay = b

where, unknown numerical solution vector

y = [y1; � � � ; yN�1]T

right-hand side vector
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and coe�cient matrix A, which is tridiagonal.



THEORETICAL RESULTS

Suppose the true solution Y (x) has several continuous

derivatives. For the �nite di�erence scheme, we have

the following results.

1. The scheme is of second-order accurate,

max
0�i�N

jY (xi)� yij = O(h2)

2. There is an asymptotic error expansion

Y (xi)� yh(xi) = h2D(xi) +O(h4)

for some function D(x) independent of h.

De�ne Richardson extrapolation

~yh(xi) =
4 yh(xi)� y2h(xi)

3



Then

Y (xi)� ~yh(xi) = O(h
4)

i.e., without much additional e�ort, we obtain a fourth-

order approximate solution.

Actually we can have more terms in asymptotic error

expansion

Y (xi)� yh(xi) = h2D1(xi) + h4D2(xi)
+O(h6)

for some functions D1(x) and D2(x) independent of

h.

We can then perform further steps of extrapolation

Y (xi)�
16 ~yh(xi)� ~y2h(xi)

15
= O(h6)

to get even higher order convergence.



EXAMPLE. Use the �nite di�erence method to solve

the boundary value problem

Y 00 = � 2x

1 + x2
Y 0 + Y +

2

1 + x2

� log(1 + x2); 0 � x � 1
Y (0) = 0

Y (1) = log(2)

The true solution is Y (x) = log(1 + x2).



Numerical errors Y (x)� yh(x)

x h = 1=20 h = 1=40 R h = 1=80 R
0:1 5:10E� 5 1:27E� 5 4:0 3:18E� 6 4:0
0:2 7:84E� 5 1:96E� 5 4:0 4:90E� 6 4:0
0:3 8:64E� 5 2:16E� 5 4:0 5:40E� 6 4:0
0:4 8:08E� 5 2:02E� 5 4:0 5:05E� 6 4:0
0:5 6:73E� 5 1:68E� 5 4:0 4:21E� 6 4:0
0:6 5:08E� 5 1:27E� 5 4:0 3:17E� 6 4:0
0:7 3:44E� 5 8:60E� 6 4:0 2:15E� 6 4:0
0:8 2:00E� 5 5:01E� 6 4:0 1:25E� 6 4:0
0:9 8:50E� 6 2:13E� 6 4:0 5:32E� 7 4:0

The column marked \R" next to the column of the

solution errors for a stepsize h consists of the ratios

of the solution errors for the stepsize h with those for

the stepsize 2h. We clearly observe an error reduction

of a factor of around 4 when the stepsize is halved,

indicating a second order convergence of the method.



The next table give the extrapolation errors for solving

the boundary value problem, showing the accuracy

improvement by the extrapolation.

x h = 1=40 h = 1=80 R
0:1 �9:23E� 09 �5:76E� 10 16:01
0:2 �1:04E� 08 �6:53E� 10 15:99
0:3 �6:60E� 09 �4:14E� 10 15:96
0:4 �1:18E� 09 �7:57E� 11 15:64
0:5 3:31E� 09 2:05E� 10 16:14
0:6 5:76E� 09 3:59E� 10 16:07
0:7 6:12E� 09 3:81E� 10 16:04
0:8 4:88E� 09 3:04E� 10 16:03
0:9 2:67E� 09 1:67E� 10 16:02



DIFFERENCE SCHEME FOR GENERAL
EQUATION

Di�erence schemes for solving boundary value prob-

lems of more general equations can be derived simi-

larly. As an example, consider

Y 00 = f(x; Y; Y 0)

At an interior node point xi, the di�erential equation

can be approximated by the di�erence equation

yi+1 � 2 yi + yi�1
h2

= f
�
xi; yi;

yi+1 � yi�1
2h

�



TREATMENT OF OTHER BOUNDARY
CONDITIONS

Boundary conditions involving the derivative of the

unknown need to be discretized carefully.

Consider the following boundary condition at x = b:

Y 0(b) + k Y (b) = g2

If we use the discrete boundary condition

yN � yN�1
h

+ k yN = g2

then the di�erence solution will have a �rst-order ac-

curacy only, even though the di�erence equations at

the interior nodes are second-order.



To maintain second-order accuracy, need a second-

order treatment of the derivative term Y 0(b), e.g.,
since

Y 0(b) =
3YN � 4YN�1 + YN�2

2h
+O(h2)

we can approximate the boundary condition by

3 yN � 4 yN�1 + yN�2
2h

+ k yN = g2


