TWO-POINT BVP

Consider the two-point boundary value problem of a second-order linear equation:

$$
\begin{gathered}
Y^{\prime \prime}(x)=p(x) Y^{\prime}(x)+q(x) Y(x)+r(x) \\
a \leq x \leq b \\
Y(a)=g_{1}, \quad Y(b)=g_{2}
\end{gathered}
$$

Assume the given functions p, q and r are continuous on $[a, b]$. Unlike the initial value problem of the equation that always has a unique solution, the theory of the two-point boundary value problem is more complicated. We will assume the problem has a unique smooth solution Y; a sufficient condition for this is $q(x)>0$ for $x \in[a, b]$.

In general, we need to depend on numerical methods to solve the problem.

FINITE DIFFERENCE METHOD

We derive a finite difference scheme for the two-point boundary value problem in three steps.

Step 1. Discretize the interval $[a, b]$.
Let N be a positive integer, and divide the interval [a, b] into N equal parts:

$$
[a, b]=\left[x_{0}, x_{1}\right] \cup\left[x_{1}, x_{2}\right] \cup \cdots \cup\left[x_{N-1}, x_{N}\right]
$$

Let $h=(b-a) / N$, called stepsize or gridsize. $x_{i}=$ $a+i h, 0 \leq i \leq N$, are grid (or node) points.

We use the notation $p_{i}=p\left(x_{i}\right), q_{i}=q\left(x_{i}\right), r_{i}=$ $r\left(x_{i}\right), 0 \leq i \leq N$. For $0 \leq i \leq N, y_{i}$ is numerical approximation of $Y_{i}=Y\left(x_{i}\right)$.

Step 2. Discretize the differential equation at the interior node points x_{1}, \ldots, x_{N-1}.
Recall

$$
\begin{aligned}
Y^{\prime}\left(x_{i}\right) & =\frac{Y_{i+1}-Y_{i-1}}{2 h}+O\left(h^{2}\right) \\
Y^{\prime \prime}\left(x_{i}\right) & =\frac{Y_{i+1}-2 Y_{i}+Y_{i-1}}{h^{2}}+O\left(h^{2}\right)
\end{aligned}
$$

Then the differential equation at $x=x_{i}$ becomes

$$
\begin{aligned}
\frac{Y_{i+1}-2 Y_{i}+Y_{i-1}}{h^{2}}= & p_{i} \frac{Y_{i+1}-Y_{i-1}}{2 h} \\
& +q_{i} Y_{i}+r_{i}+O\left(h^{2}\right)
\end{aligned}
$$

Dropping the $O\left(h^{2}\right)$ term, replacing Y_{i} by y_{i}, we obtain the difference equations

$$
\frac{y_{i+1}-2 y_{i}+y_{i-1}}{h^{2}}=p_{i} \frac{y_{i+1}-y_{i-1}}{2 h}+q_{i} y_{i}+r_{i}
$$

for $1 \leq i \leq N-1$. So

$$
\begin{aligned}
& -\left(1+\frac{h}{2} p_{i}\right) y_{i-1}+\left(2+h^{2} q_{i}\right) y_{i}+\left(\frac{h}{2} p_{i}-1\right) y_{i+1} \\
& \quad=-h^{2} r_{i}, \quad 1 \leq i \leq N-1
\end{aligned}
$$

Step 3. Treatment of boundary conditions.
Use

$$
y_{0}=g_{1}, \quad y_{N}=g_{2}
$$

Then the difference equation with $i=1$ becomes

$$
\begin{aligned}
(2+ & \left.h^{2} q_{1}\right) y_{1}+\left(\frac{h}{2} p_{1}-1\right) y_{2} \\
& =-h^{2} r_{1}+\left(1+\frac{h}{2} p_{1}\right) g_{1}
\end{aligned}
$$

and that with $i=N-1$

$$
\begin{aligned}
-(1 & \left.+\frac{h}{2} p_{N-1}\right) y_{N-2}+\left(2+h^{2} q_{N-1}\right) y_{N-1} \\
& =-h^{2} r_{N-1}+\left(1-\frac{h}{2} p_{N-1}\right) g_{2}
\end{aligned}
$$

Finally, the finite difference system is

$$
A \mathbf{y}=\mathbf{b}
$$

where, unknown numerical solution vector

$$
\mathbf{y}=\left[y_{1}, \cdots, y_{N-1}\right]^{T}
$$

right-hand side vector

$$
\begin{aligned}
\mathbf{b}=[& -h^{2} r_{1}+\left(1+\frac{h}{2} p_{1}\right) g_{1},-h^{2} r_{2}, \cdots, \\
& \left.-h^{2} r_{N-2},-h^{2} r_{N-1}+\left(1-\frac{h}{2} p_{N-1}\right) g_{2}\right]^{T}
\end{aligned}
$$

and coefficient matrix A, which is tridiagonal.

THEORETICAL RESULTS

Suppose the true solution $Y(x)$ has several continuous derivatives. For the finite difference scheme, we have the following results.

1. The scheme is of second-order accurate,

$$
\max _{0 \leq i \leq N}\left|Y\left(x_{i}\right)-y_{i}\right|=O\left(h^{2}\right)
$$

2. There is an asymptotic error expansion

$$
Y\left(x_{i}\right)-y_{h}\left(x_{i}\right)=h^{2} D\left(x_{i}\right)+O\left(h^{4}\right)
$$

for some function $D(x)$ independent of h.

Define Richardson extrapolation

$$
\tilde{y}_{h}\left(x_{i}\right)=\frac{4 y_{h}\left(x_{i}\right)-y_{2 h}\left(x_{i}\right)}{3}
$$

Then

$$
Y\left(x_{i}\right)-\tilde{y}_{h}\left(x_{i}\right)=O\left(h^{4}\right)
$$

i.e., without much additional effort, we obtain a fourthorder approximate solution.

Actually we can have more terms in asymptotic error expansion

$$
\begin{aligned}
Y\left(x_{i}\right)-y_{h}\left(x_{i}\right)= & h^{2} D_{1}\left(x_{i}\right)+h^{4} D_{2}\left(x_{i}\right) \\
& +O\left(h^{6}\right)
\end{aligned}
$$

for some functions $D_{1}(x)$ and $D_{2}(x)$ independent of h.

We can then perform further steps of extrapolation

$$
Y\left(x_{i}\right)-\frac{16 \tilde{y}_{h}\left(x_{i}\right)-\tilde{y}_{2 h}\left(x_{i}\right)}{15}=O\left(h^{6}\right)
$$

to get even higher order convergence.

EXAMPLE. Use the finite difference method to solve the boundary value problem

$$
\begin{aligned}
Y^{\prime \prime}= & -\frac{2 x}{1+x^{2}} Y^{\prime}+Y+\frac{2}{1+x^{2}} \\
& -\log \left(1+x^{2}\right), \quad 0 \leq x \leq 1 \\
Y(0)= & 0 \\
Y(1)= & \log (2)
\end{aligned}
$$

The true solution is $Y(x)=\log \left(1+x^{2}\right)$.

Numerical errors $Y(x)-y_{h}(x)$

x	$h=1 / 20$	$h=1 / 40$	R	$h=1 / 80$	R
0.1	$5.10 \mathrm{E}-5$	$1.27 \mathrm{E}-5$	4.0	$3.18 \mathrm{E}-6$	4.0
0.2	$7.84 \mathrm{E}-5$	$1.96 \mathrm{E}-5$	4.0	$4.90 \mathrm{E}-6$	4.0
0.3	$8.64 \mathrm{E}-5$	$2.16 \mathrm{E}-5$	4.0	$5.40 \mathrm{E}-6$	4.0
0.4	$8.08 \mathrm{E}-5$	$2.02 \mathrm{E}-5$	4.0	$5.05 \mathrm{E}-6$	4.0
0.5	$6.73 \mathrm{E}-5$	$1.68 \mathrm{E}-5$	4.0	$4.21 \mathrm{E}-6$	4.0
0.6	$5.08 \mathrm{E}-5$	$1.27 \mathrm{E}-5$	4.0	$3.17 \mathrm{E}-6$	4.0
0.7	$3.44 \mathrm{E}-5$	$8.60 \mathrm{E}-6$	4.0	$2.15 \mathrm{E}-6$	4.0
0.8	$2.00 \mathrm{E}-5$	$5.01 \mathrm{E}-6$	4.0	$1.25 \mathrm{E}-6$	4.0
0.9	$8.50 \mathrm{E}-6$	$2.13 \mathrm{E}-6$	4.0	$5.32 \mathrm{E}-7$	4.0

The column marked " R " next to the column of the solution errors for a stepsize h consists of the ratios of the solution errors for the stepsize h with those for the stepsize $2 h$. We clearly observe an error reduction of a factor of around 4 when the stepsize is halved, indicating a second order convergence of the method.

The next table give the extrapolation errors for solving the boundary value problem, showing the accuracy improvement by the extrapolation.

x	$h=1 / 40$	$h=1 / 80$	R
0.1	$-9.23 \mathrm{E}-09$	$-5.76 \mathrm{E}-10$	16.01
0.2	$-1.04 \mathrm{E}-08$	$-6.53 \mathrm{E}-10$	15.99
0.3	$-6.60 \mathrm{E}-09$	$-4.14 \mathrm{E}-10$	15.96
0.4	$-1.18 \mathrm{E}-09$	$-7.57 \mathrm{E}-11$	15.64
0.5	$3.31 \mathrm{E}-09$	$2.05 \mathrm{E}-10$	16.14
0.6	$5.76 \mathrm{E}-09$	$3.59 \mathrm{E}-10$	16.07
0.7	$6.12 \mathrm{E}-09$	$3.81 \mathrm{E}-10$	16.04
0.8	$4.88 \mathrm{E}-09$	$3.04 \mathrm{E}-10$	16.03
0.9	$2.67 \mathrm{E}-09$	$1.67 \mathrm{E}-10$	16.02

DIFFERENCE SCHEME FOR GENERAL EQUATION

Difference schemes for solving boundary value problems of more general equations can be derived similarly. As an example, consider

$$
Y^{\prime \prime}=f\left(x, Y, Y^{\prime}\right)
$$

At an interior node point x_{i}, the differential equation can be approximated by the difference equation

$$
\frac{y_{i+1}-2 y_{i}+y_{i-1}}{h^{2}}=f\left(x_{i}, y_{i}, \frac{y_{i+1}-y_{i-1}}{2 h}\right)
$$

TREATMENT OF OTHER BOUNDARY CONDITIONS

Boundary conditions involving the derivative of the unknown need to be discretized carefully.

Consider the following boundary condition at $x=b$:

$$
Y^{\prime}(b)+k Y(b)=g_{2}
$$

If we use the discrete boundary condition

$$
\frac{y_{N}-y_{N-1}}{h}+k y_{N}=g_{2}
$$

then the difference solution will have a first-order accuracy only, even though the difference equations at the interior nodes are second-order.

To maintain second-order accuracy, need a secondorder treatment of the derivative term $Y^{\prime}(b)$, e.g., since

$$
Y^{\prime}(b)=\frac{3 Y_{N}-4 Y_{N-1}+Y_{N-2}}{2 h}+O\left(h^{2}\right)
$$

we can approximate the boundary condition by

$$
\frac{3 y_{N}-4 y_{N-1}+y_{N-2}}{2 h}+k y_{N}=g_{2}
$$

