TWO-POINT BVP

Consider the two-point boundary value problem of a
second-order linear equation:

Y'(z) = p(x) Y'(z) + q(z) Y(z) + r(z)
a<x<b
Y(a) =91, Y(b) =g
Assume the given functions p, ¢ and r are continuous
on [a, b]. Unlike the initial value problem of the equa-
tion that always has a unique solution, the theory of
the two-point boundary value problem is more com-
plicated. We will assume the problem has a unique

smooth solution Y': a sufficient condition for this is
g(x) > 0 for x € [a,b].

In general, we need to depend on numerical methods
to solve the problem.



FINITE DIFFERENCE METHOD

We derive a finite difference scheme for the two-point
boundary value problem in three steps.

Step 1. Discretize the interval [a, b].

Let IV be a positive integer, and divide the interval
[a, b] into N equal parts:

[a,b] = [x0,x1] U [x1,22] U - U[xn_1,2N]

Let h = (b — a)/N, called stepsize or gridsize. x; =
a-+ih, 0 <i< N, are grid (or node) points.

We use the notation p;, = p(z;), ¢; = q(x;), r; =
r(x;), 0 <7 < N. For 0 < i < N, y; is numerical
approximation of Y; = Y (z;).



Step 2. Discretize the differential equation at the in-

terior node points x1,...,TN_1.
Recall
Yii1—Y;_
Y/(z;) = %+12}Z -1 o(h?)
Yii1—2Y;,+Y,_
Y,/(xi) _ 1+1 h2’L—|_ 1—1 —|—O(h2)

Then the differential equation at x = x; becomes

Vi1 —2Yi+ Y1 Yy — Vi

n2 P
+ ¢;Y; + i + O(h?)

Dropping the O(h?) term, replacing Y; by v;, we ob-
tain the difference equations
yH1_2%+yF1:pyH1_%
h? ' 2h
for1<i< N —1. So

~1
+ QY + Ty

h 5 h
—(1+§poyp4+12+4l%Mﬁ+<épr—i>w+1

— —h%r;, 1<i<N-1



Step 3. Treatment of boundary conditions.
Use

Yyo =91, YN — 92

Then the difference equation with © = 1 becomes
5 h
(2+h%a)yi + (Jp1—1) 42

h
= —h%ry + (1 + 5291) g1

and that with 2 = N — 1

h
— (1 + EpN_l) yN—2 + 2+ h2qn_1) yn—_1

h
= —h%ry_1+ (1 — 5PN—1> g2



Finally, the finite difference system is
Ay = b

where, unknown numerical solution vector

y = [yla"' 7yN—1]T

right-hand side vector
h
b = [—hzrl + (1 + Epl) 91, —h2"°27 T

2 2 h !
—h*rN_p, —h"rN_1 + (1 — 51?1\1-1) 92]

and coefficient matrix A, which is tridiagonal.



THEORETICAL RESULTS

Suppose the true solution Y () has several continuous
derivatives. For the finite difference scheme, we have
the following results.

1. The scheme is of second-order accurate,

Ve — | — 2
OgaSXN| (wz) yz| O(h)

2. There is an asymptotic error expansion
Y (x;) — yp(z;) = h*D(x;) + O(h*)

for some function D(x) independent of h.

Define Richardson extrapolation

i (1) = 4 yp(zi) 3— yon(Zi)



Then
Y (z;) — Gin(z;) = O(h?)

I.e., without much additional effort, we obtain a fourth-

order approximate solution.

Actually we can have more terms in asymptotic error

expansion
Y (x;) — yp(z;) = h2D1(z;) + h* Da(x;)
+ O(h®)

for some functions Di(x) and Dy(x) independent of
h.

We can then perform further steps of extrapolation

16 yp(x;) — ¢ :
Y(z;) — Gn(x;) — Gop(z;) _ O(h6)
15
to get even higher order convergence.




EXAMPLE. Use the finite difference method to solve
the boundary value problem

Y= _1+gr;2Y/+Y+ 1+ a2
—Iog(1+a:2), 0<x<1
Y(0) =0
Y (1) = log(2)

The true solution is Y (z) = log(1 + z?).



Numerical errors Y (x) — yp(x)

r h=1/20 h=1/40 R h=1/80 R
0.1 5.10E—5 127E—5 4.0 3.18E—6 4.0
02 7.84E—5 1.96E—5 4.0 4.90E—6 4.0
0.3 8.64E—5 216E—5 4.0 5.40E—6 4.0
0.4 8.08E—5 2.02E—5 4.0 5.05E—6 4.0
05 6.73E—5 1.68E—5 4.0 4.21E—6 4.0
06 5.08E—5 1.27E—5 4.0 3.17TE—6 4.0
0.7 3.44E—5 8.60E—6 4.0 2.15E—6 4.0
0.8 2.00E—5 5.01E—6 4.0 1.25E—6 4.0
09 850E—6 213E—6 4.0 532E—7 4.0

“R”
solution errors for a stepsize h consists of the ratios

The column marked next to the column of the
of the solution errors for the stepsize h with those for
the stepsize 2h. We clearly observe an error reduction
of a factor of around 4 when the stepsize is halved,

indicating a second order convergence of the method.



The next table give the extrapolation errors for solving
the boundary value problem, showing the accuracy
improvement by the extrapolation.

r  h=1/40 h=1/80 R
0.1 —923E—09 —5.76E—10 16.01
0.2 —1.04E—08 —6.53E—10 15.99
0.3 —6.60E—09 —4.14E —10 15.96
0.4 —1.18E—09 —7.57E—11 15.64
05 331E—09 2.05E—10 16.14
0.6 576E—09 3.59E—10 16.07
0.7 6.12E—09 3.81E—10 16.04
0.8 4.88E—09 3.04E—10 16.03
0.9 267E—09 1.67E—10 16.02




DIFFERENCE SCHEME FOR GENERAL
EQUATION

Difference schemes for solving boundary value prob-
lems of more general equations can be derived simi-

larly. As an example, consider
V' = f(z,Y,Y")

At an interior node point x;, the differential equation
can be approximated by the difference equation

Yitl —2Yi +Yi—1  Yirl — Yi—1
1,2 = f (377,7 Yis >h )



TREATMENT OF OTHER BOUNDARY
CONDITIONS

Boundary conditions involving the derivative of the

unknown need to be discretized carefully.

Consider the following boundary condition at x = b:

Y'(0) + kY (b) = g2
If we use the discrete boundary condition

YN — YN-1
h
then the difference solution will have a first-order ac-

+Ekyn = g2

curacy only, even though the difference equations at

the interior nodes are second-order.



To maintain second-order accuracy, need a second-

order treatment of the derivative term Y’/(b), e.g.,

since

3YN — 4YN—1 + YN—2
2h

we can approximate the boundary condition by

Y'(b) = + O(h?)

3yn —4yn—_1+YyYn—2
2 h

+kyn = g2



