TWO-POINT BVP

Consider the two-point boundary value problem of a second-order linear equation:

$$Y''(x) = p(x) Y'(x) + q(x) Y(x) + r(x)$$

 $a \le x \le b$
 $Y(a) = g_1, \quad Y(b) = g_2$

Assume the given functions p, q and r are continuous on [a, b]. Unlike the initial value problem of the equation that always has a unique solution, the theory of the two-point boundary value problem is more complicated. We will assume the problem has a unique smooth solution Y; a sufficient condition for this is q(x) > 0 for $x \in [a, b]$.

In general, we need to depend on numerical methods to solve the problem.

FINITE DIFFERENCE METHOD

We derive a finite difference scheme for the two-point boundary value problem in three steps.

<u>Step 1</u>. Discretize the interval [a, b]. Let N be a positive integer, and divide the interval [a, b] into N equal parts:

 $[a,b] = [x_0, x_1] \cup [x_1, x_2] \cup \cdots \cup [x_{N-1}, x_N]$ Let h = (b-a)/N, called stepsize or gridsize. $x_i = a + ih$, $0 \le i \le N$, are grid (or node) points.

We use the notation $p_i = p(x_i)$, $q_i = q(x_i)$, $r_i = r(x_i)$, $0 \le i \le N$. For $0 \le i \le N$, y_i is numerical approximation of $Y_i = Y(x_i)$.

<u>Step 2</u>. Discretize the differential equation at the interior node points x_1, \ldots, x_{N-1} . Recall

$$Y'(x_i) = \frac{Y_{i+1} - Y_{i-1}}{2h} + O(h^2)$$
$$Y''(x_i) = \frac{Y_{i+1} - 2Y_i + Y_{i-1}}{h^2} + O(h^2)$$

Then the differential equation at $x = x_i$ becomes

$$\frac{Y_{i+1} - 2Y_i + Y_{i-1}}{h^2} = p_i \frac{Y_{i+1} - Y_{i-1}}{2h} + q_i Y_i + r_i + O(h^2)$$

Dropping the $O(h^2)$ term, replacing Y_i by y_i , we obtain the difference equations

$$\frac{y_{i+1} - 2y_i + y_{i-1}}{h^2} = p_i \frac{y_{i+1} - y_{i-1}}{2h} + q_i y_i + r_i$$

for $1 \leq i \leq N-1$. So

$$- \left(1 + \frac{h}{2}p_i\right)y_{i-1} + (2 + h^2q_i)y_i + \left(\frac{h}{2}p_i - 1\right)y_{i+1} \\ = -h^2r_i, \quad 1 \le i \le N-1$$

 $\underbrace{\text{Step 3}}_{\text{Use}}.$ Treatment of boundary conditions.

$$y_0 = g_1, \quad y_N = g_2$$

Then the difference equation with i=1 becomes

$$(2+h^2q_1)y_1 + \left(\frac{h}{2}p_1 - 1\right)y_2$$

= $-h^2r_1 + \left(1 + \frac{h}{2}p_1\right)g_1$

and that with i = N - 1

$$-\left(1+\frac{h}{2}p_{N-1}\right)y_{N-2}+\left(2+h^2q_{N-1}\right)y_{N-1}$$
$$=-h^2r_{N-1}+\left(1-\frac{h}{2}p_{N-1}\right)g_2$$

Finally, the finite difference system is

$$A\mathbf{y} = \mathbf{b}$$

where, unknown numerical solution vector

$$\mathbf{y} = [y_1, \cdots, y_{N-1}]^T$$

right-hand side vector

$$\mathbf{b} = \left[-h^2 r_1 + \left(1 + \frac{h}{2} p_1 \right) g_1, -h^2 r_2, \cdots, -h^2 r_{N-2}, -h^2 r_{N-1} + \left(1 - \frac{h}{2} p_{N-1} \right) g_2 \right]^T$$

and coefficient matrix A, which is tridiagonal.

THEORETICAL RESULTS

Suppose the true solution Y(x) has several continuous derivatives. For the finite difference scheme, we have the following results.

1. The scheme is of second-order accurate,

$$\max_{0 \le i \le N} |Y(x_i) - y_i| = O(h^2)$$

2. There is an asymptotic error expansion

$$Y(x_i) - y_h(x_i) = h^2 D(x_i) + O(h^4)$$

for some function D(x) independent of h.

Define Richardson extrapolation

$$\tilde{y}_h(x_i) = \frac{4 y_h(x_i) - y_{2h}(x_i)}{3}$$

Then

$$Y(x_i) - \tilde{y}_h(x_i) = O(h^4)$$

i.e., without much additional effort, we obtain a fourthorder approximate solution.

Actually we can have more terms in asymptotic error expansion

$$Y(x_i) - y_h(x_i) = h^2 D_1(x_i) + h^4 D_2(x_i) + O(h^6)$$

for some functions $D_1(x)$ and $D_2(x)$ independent of h.

We can then perform further steps of extrapolation

$$Y(x_i) - \frac{16\,\tilde{y}_h(x_i) - \tilde{y}_{2h}(x_i)}{15} = O(h^6)$$

to get even higher order convergence.

EXAMPLE. Use the finite difference method to solve the boundary value problem

$$Y'' = -\frac{2x}{1+x^2}Y' + Y + \frac{2}{1+x^2} -\log(1+x^2), \quad 0 \le x \le 1$$
$$Y(0) = 0$$
$$Y(1) = \log(2)$$

The true solution is $Y(x) = \log(1 + x^2)$.

Numerical errors $Y(x) - y_h(x)$

x	h = 1/20	h = 1/40	R	h = 1/80	R
0.1	5.10E - 5	1.27E - 5	4.0	3.18E - 6	4.0
0.2	7.84E - 5	1.96E-5	4.0	4.90E - 6	4.0
0.3	8.64 E - 5	2.16E-5	4.0	5.40E - 6	4.0
0.4	8.08E-5	2.02E - 5	4.0	5.05 E - 6	4.0
0.5	6.73E – 5	1.68E-5	4.0	4.21E - 6	4.0
0.6	5.08E-5	1.27E-5	4.0	3.17E-6	4.0
0.7	3.44E - 5	8.60 E - 6	4.0	2.15E-6	4.0
0.8	2.00E - 5	5.01E-6	4.0	1.25E-6	4.0
0.9	8.50E-6	2.13E-6	4.0	5.32E - 7	4.0

The column marked "R" next to the column of the solution errors for a stepsize h consists of the ratios of the solution errors for the stepsize h with those for the stepsize 2h. We clearly observe an error reduction of a factor of around 4 when the stepsize is halved, indicating a second order convergence of the method.

The next table give the extrapolation errors for solving the boundary value problem, showing the accuracy improvement by the extrapolation.

\overline{x}	h = 1/40	h = 1/80	R
0.1	-9.23E - 09	-5.76E - 10	16.01
0.2	-1.04E-08	-6.53E - 10	15.99
0.3	-6.60E - 09	-4.14E-10	15.96
0.4	-1.18E-09	-7.57 E - 11	15.64
0.5	3.31E-09	2.05E-10	16.14
0.6	5.76E - 09	3.59E-10	16.07
0.7	6.12E-09	3.81E-10	16.04
0.8	4.88E-09	3.04E-10	16.03
0.9	2.67 E - 09	1.67E-10	16.02

DIFFERENCE SCHEME FOR GENERAL EQUATION

Difference schemes for solving boundary value problems of more general equations can be derived similarly. As an example, consider

$$Y'' = f(x, Y, Y')$$

At an interior node point x_i , the differential equation can be approximated by the difference equation

$$\frac{y_{i+1} - 2y_i + y_{i-1}}{h^2} = f\left(x_i, y_i, \frac{y_{i+1} - y_{i-1}}{2h}\right)$$

TREATMENT OF OTHER BOUNDARY CONDITIONS

Boundary conditions involving the derivative of the unknown need to be discretized carefully.

Consider the following boundary condition at x = b:

$$Y'(b) + k Y(b) = g_2$$

If we use the discrete boundary condition

$$\frac{y_N - y_{N-1}}{h} + k \, y_N = g_2$$

then the difference solution will have a first-order accuracy only, even though the difference equations at the interior nodes are second-order. To maintain second-order accuracy, need a secondorder treatment of the derivative term Y'(b), e.g., since

$$Y'(b) = \frac{3Y_N - 4Y_{N-1} + Y_{N-2}}{2h} + O(h^2)$$

we can approximate the boundary condition by

$$\frac{3\,y_N - 4\,y_{N-1} + y_{N-2}}{2\,h} + k\,y_N = g_2$$