
SYSTEMS OF ODES

Consider the pendulum shown below. Assume the rod

is of neglible mass, that the pendulum is of mass m,

and that the rod is of length `. Assume the pendulum

moves in the plane shown, and assume there is no

friction in the motion about its pivot point. Let �(x)

denote the position of the pendulum about the vertical

line thru the pivot, with � measured in radians and x

measured in units of time. Then Newton's second

law implies

m`
d2�

dx2
= �mg sin (� (x))



Introduce Y1(x) = �(x) and Y2(x) = �0(x). The

function Y2(x) is called the angular velocity. We can

now write

Y 01(x) = Y2(x); Y1(0) = �(0)

Y 02(x) = �
g

`
sin (Y1(x)) ; Y2(0) = �

0(0)

This is a simultaneous system of two di�erential equa-

tions in two unknowns.

We often write this in vector form. Introduce

Y(x) =

"
Y1(x)
Y2(x)

#
Then

Y0(x) =

24 Y2(x)

�g
`
sin (Y1(x))

35
Y(0) = Y0 =

"
Y1(0)
Y2(0)

#
=

"
�(0)
�0(0)

#



Introduce

f (x; z) =

24 z2

�g
`
sin (z1)

35 ; z =

"
z1
z2

#

Then our di�erential equation problem

Y0(x) =

24 Y2(x)

�g
`
sin (Y1(x))

35
Y(0) = Y0 =

"
Y1(0)
Y2(0)

#
=

"
�(0)
�0(0)

#
can be written in the familiar form

Y0(x) = f (x;Y(x)) ; Y(0) = Y0 (1)

We can convert any higher order di�erential equation

into a system of �rst order di�erential equations, and

we can write them in the vector form (1).



Lotka-Volterra predator-prey model.

Y 01 = AY1[1�BY2]; Y1(0) = Y1;0

Y 02 = CY2[DY1 � 1]; Y2(0) = Y2;0
(2)

with A;B;C;D > 0. x denotes time, Y1(x) is the

number of prey (e.g., rabbits) at time x, and Y2(x)

the number of predators (e.g., foxes). If there is only a

single type of predator and a single type of prey, then

this model is often a good approximation of reality.

Again write

Y(x) =

"
Y1(x)
Y2(x)

#
and de�ne

f (x; z) =

"
Az1[1�Bz2]
Cz2[Dz1 � 1]

#
; z =

"
z1
z2

#
although there is no explicit dependence on x. Then

system (2) can be written as

Y0(x) = f (x;Y(x)) ; Y(0) = Y0



GENERAL SYSTEMS OF ODES

An initial value problem for a system of m di�erential

equations has the form

Y 01(x) = f1(x; Y1(x); : : : ; Ym(x)); Y1(x0) = Y1;0
... ...

Y 0m(x) = fm(x; Y1(x); : : : ; Ym(x)); Ym(x0) = Ym;0
(3)

Introduce

Y(x) =

264 Y1(x)
...

Ym(x)

375 ; Y0 =

264 Y1;0
...

Ym;0

375
f(x; z) =

264 f1(x; z1; : : : ; zm)
...

fm(x; z1; : : : ; zm)

375
Then (3) can be written as

Y0(x) = f (x;Y(x)) ; Y(0) = Y0



LINEAR SYSTEMS

Of special interest are systems of the form

Y0(x) = AY(x) +G(x); Y(0) = Y0 (4)

with A a square matrix of order m and G(x) a col-

umn vector of length m with functions Gi(x) as com-

ponents. Using the notation introduced for writing

systems,

f(x; z) = Az+G(x); z 2 Rm

This equation is the analogue for studying systems of

ODEs that the model equation

y0 = �y + g(x)

is for studying a single di�erential equation.



EULER'S METHOD FOR SYSTEMS

Consider

Y0(x) = f (x;Y(x)) ; Y(0) = Y0

to be a systems of two equations

Y 01(x) = f1(x; Y1(x); Y2(x)); Y1(0) = Y1;0
Y 02(x) = f2(x; Y1(x); Y2(x)); Y2(0) = Y2;0

(5)

Denote its solution be [Y1(x); Y2(x)].

Following the earlier derivations for Euler's method,
we can use Taylor's theorem to obtain

Y1(xn+1) = Y1(xn) + hf1(xn; Y1(xn); Y2(xn)) +
h2

2
Y 001 (�n)

(6)

Y2(xn+1) = Y2(xn) + hf2(xn; Y1(xn); Y2(xn)) +
h2

2
Y 002 (�n)

Dropping the remainder terms, we obtain Euler's method
for problem (5),

y1;n+1 = y1;n + hf1(xn; y1;n; y2;n); y1;0 = Y1;0

y2;n+1 = y2;n + hf2(xn; y1;n; y2;n); y2;0 = Y2;0

for n = 0; 1; 2; : : :



ERROR ANALYSIS

If Y1(x), Y2(x) are twice continuously di�erentiable,

and if the functions f1(x; z1; z2) and f2(x; z1; z2) are

su�ciently di�erentiable, then it can be shown that

max
x0�x�b

���Y1(xn)� y1;n��� � ch
max

x0�x�b

���Y2(xn)� y2;n��� � ch (7)

for a suitable choice of c � 0.

The theory depends on generalizations of the proof

used with Euler's method for a single equation. One

needs to assume that there is a constant K > 0 such

that

kf (x; z)� f (x;w)k1 � K kz�wk1 (8)

for x0 � x � b, z;w 2 R2. Recall the de�nition of
the norm k�k1 from Chapter 6.



The role of @f(x; z)=@z in the single variable theory

is replaced by the Jacobian matrix

F(x; z) =

26664
@f1(x; z1; z2)

@z1

@f1(x; z1; z2)

@z2
@f2(x; z1; z2)

@z1

@f2(x; z1; z2)

@z2

37775 (9)

It is possible to show that

K = max
x0�x�b
z2R2

kF(x; z)k1

is suitable for showing (8).

All of this work generalizes to problems of any order

m � 2. Then we require

kf (x; z)� f (x;w)k1 � K kz�wk1 (10)

with x0 � x � b, z;w 2 Rm. The choice of K is

often obtained using

K = max
x0�x�b
z2Rm

kF(x; z)k1

where F(x; z) is the m�m generalization of (9).



The Euler method in all cases can be written in the

dimensionless form

yn+1 = yn + hf(xn;yn); n � 0

with y0 = Y0.

It can be shown that if (10) is satis�ed, and if Y(x)

is twice-continuously di�erentiable on [x0; b], then

max
x0�x�b

kY(xn)� ynk1 � ch (11)

for some c � 0 and for all small values of h.

In addition, we can show there is a vector function

D(x) for which

Y(x)� yh(x) = D(x)h+O(h2); x0 � xn � b

for x = x0; x1; : : : ; b. Here yh(x) shows the depen-

dence of the solution on h, and yh(x) = yn for

x = x0 + nh. This justi�es the use of Richardson

extrapolation, leading to

Y(x)� yh(x) = yh(x)� y2h(x) +O(h2)



NUMERICAL EXAMPLE. Consider solving the initial

value problem

Y 000 + 3Y 00 + 3Y 0 + Y = �4 sin(x);
Y (0) = Y 0(0) = 1; Y 00(0) = �1

(12)

Reformulate it as

Y 01 = Y2 Y1(0) = 1

Y 02 = Y3 Y2(0) = 1

Y 03 = �Y1 � 3Y2 � 3Y3 � 4 sin(x); Y3(0) = �1
(13)

The solution of (12) is Y (x) = cos(x) + sin(x), and

the solution of (13) can be generated from it using

Y1(x) = Y (x).



The results for Y1(x) = sin(x)+cos(x) are given in the

following table, for stepsizes 2h = 0:1 and h = 0:05.

The Richardson error estimate is quite accurate.

x y(x) y(x)� y2h(x) y(x)� yh(x) Ratio
2 0:49315 �8:78E� 2 �4:25E� 2 2:1

4 �1:41045 1:39E� 1 6:86E� 2 2:0

6 0:68075 5:19E� 2 2:49E� 2 2:1

8 0:84386 �1:56E� 1 �7:56E� 2 2:1

10 �1:38309 8:39E� 2 4:14E� 2 2:0

x y(x) y(x)� yh(x) yh(x)� y2h(x)
2 0:49315 �4:25E� 2 �4:53E� 2
4 �1:41045 6:86E� 2 7:05E� 2
6 0:68075 2:49E� 2 2:70E� 2
8 0:84386 �7:56E� 2 �7:99E� 2
10 �1:38309 4:14E� 2 4:25E� 2



OTHER METHODS

Other numerical methods apply to systems in the same
straightforward manner. by using the vector form

Y0(x) = f (x;Y(x)) ; Y(0) = Y0 (14)

for a system, there is no apparent change in the nu-
merical method. For example, the following Runge-
Kutta method for solving a single di�erential equation,

yn+1 = yn+
h

2
[f(xn; yn)+f(xn+1; yn+hf(xn; yn))];

n � 0, generalizes as follows for solving (14):

yn+1 = yn+
h

2
[f(xn;yn)+f(xn+1;yn+hf(xn;yn))];

n � 0. This can then be decomposed into compo-
nents if needed. For a system of order 2, we have

yj;n+1 = yj;n +
h

2

h
fj(xn; y1;n; y2;n)

+fj
�
xn+1; y1;n + hf1(xn; y1;n; y2;n);

y2;n + hf2(xn;y1;n; y2;n)
�i

for n � 0 and j = 1; 2.


