
MULTISTEP METHODS

All of the methods we have studied until now are ex-

amples of one-step methods. These methods use one

past value of the numerical solution, call it yn, in order

to compute a new value yn+1. Multistep methods use

more than one past value, and these are often more

e�cient than the earlier methods. For example,

yn+1 = yn+
h

2
[3f(xn; yn)� f(xn�1; yn�1)] ; n � 1

(1)

is an explicit, stable, second order method with trun-

cation error of size O
�
h3
�
. We derive it below.

Multistep methods can be derived in a number of

ways, but the most popular methods are derived most

easily using numerical interpolation and numerical in-

tegration.



Integrate the equation

Y 0(x) = f (x; Y (x)) (2)

over the interval [xn; xn+1]. This yields

Y (xn+1) = Y (xn) +
Z xn+1
xn

f (x; Y (x)) dx (3)

Other intervals
�
xn�p; xn+1

�
, p > 0, can also be used;

but the most popular multistep methods are obtained

with the choice [xn; xn+1].

Approximate the integral by replacing the integrand

with a polynomial interpolant of it. For example, the

linear interpolant of a function g(x) based on inter-

polation at fxn�1; xng is given by

P1(x) =
(xn � x) g(xn�1) + (x� xn�1) g(xn)

h

Integrate this over the interval [xn; xn+1], obtainingZ xn+1
xn

g(x) dx �
Z xn+1
xn

P1(x) dx

=
3h

2
g(xn)�

h

2
g (xn�1)



By using methods similar to those used in x5.2, it can
be shown thatZ xn+1

xn
g(x) dx =

3h

2
g(xn)�

h

2
g (xn�1)

+
5

12
h3g00 (�n)

for some �n, xn�1 � �n � xn+1. Using this in (3)

with g(x) = Y 0(x) = f (x; Y (x)) yields

Y (xn+1) = Y (xn) +
h
2 [3f(xn; Y (xn))

�f(xn�1; Y (xn�1))]
+ 5
12h

3Y 000 (�n)

This leads to the method in (1) when the truncation

error term is dropped:

yn+1 = yn+
h

2
[3f(xn; yn)� f(xn�1; yn�1)] ; n � 1

This is a two-step method (a second order recurrence

relation) and it requires values for both y0 and y1
before proceeding to �nd yn for n � 2. A value for

y1 must be obtained by some other method.



NUMERICAL EXAMPLE. Consider solving

Y 0(x) = �Y (x) + 2 cosx; Y (0) = 1

The true solution is Y (x) = sinx + cosx. We give

numerical results for the method in (1) with stepsizes

h = 0:05 and 2h = 0:1.

x yh(x) Y (x)� y2h(x) Y (x)� yh(x) Ratio
2 0.492597 2.13E-3 5.53E-4 3.9

4 -1.411170 2.98E-3 7.24E-4 4.1

6 -0.675004 -3.91E-3 -9.88E-4 4.0

8 0.843737 3.68E-4 1.21E-4 3.0

10 -1.383983 3.61E-3 8.90E-4 4.1

This is consistent with an error formula

Y (xn)� yh(xn) = O
�
h2
�

with a constant of proportionality that depends on xn.

Compare the error to that for a second order Runge-

Kutta method.



It can be shown that if

Y (x0)� y0 = O
�
h2
�

[usually zero]

Y (x1)� y1 = O
�
h2
�

with standard assumptions on the di�erentiability of

f and Y , then we have

max
x0�xn�b

jY (xn)� yh(xn)j � c h2

for some constant c � 0.

Moreover, if

Y (x0)� y0 � c0h
2

Y (x1)� y1 � c1h
2

for constants c0, c1, then

Y (xn)� yh(xn) = D(xn)h2 +O
�
h3
�

with D(x) a continuous function for x0 � x � b.

From this, we also have the Richardson error estimate

Y (xn)� yh(xn) �
1

3
[yh(x)� y2h(x)]



NUMERICAL EXAMPLE

(continuation)

Continue with solving

Y 0(x) = �Y (x) + 2 cosx; Y (0) = 1

using method (1). The true solution is Y (x) = sinx+

cosx. We use stepsizes h = 0:05 and 2h = 0:1.

x yh(x) Y (x)� yh(x) 1
3[yh(x)� y2h(x)]

2 0:492597 5:53E � 4 5:26E � 4
4 �1:411170 7:24E � 4 7:52E � 4
6 �0:675004 �9:88E � 4 �9:73E � 4
8 0:843737 1:21E � 4 8:21E � 5
10 �1:383983 8:90E � 4 9:08E � 4



ADAMS-BASHFORTH METHODS

Recall the integrated formula

Y (xn+1) = Y (xn) +
Z xn+1
xn

f (x; Y (x)) dx (4)

Approximate the integrand using a polynomial inter-

polant of degree q. In particular, do the interpolation

using the q + 1 points
�
xn; xn�1; : : : ; xn�q

	
.

Denote the interpolant by Pq(x):

Pq(x) =
qX
j=0

Lj;n(x)f
�
xn�j; Y (xn�j)

�

=
qX
j=0

Lj;n(x)Y
0 �xn�j�

with Lj;n(x), 0 � j � q, denoting the Lagrange inter-
polation basis functions using the points

�
xn; : : : ; xn�q

	
.



Substituting Pq(x) into (4) and integrating, we obtain

a formula

Y (xn+1) = Y (xn)

+h
qX
j=0

wj;qf
�
xn�j; Y (xn�j)

�
+ En

hwj;q =
Z xn+1
xn

Lj;n(x) dx

(5)

and En denotes the error for this numerical integra-

tion over [xn; xn+1]. Dropping En, we obtain a way

to approximate Y (xn+1) using values at past points

xn; xn�1; : : : ; xn�q:

yn+1 = yn + h
qX
j=0

wj;qf
�
xn�j; yn�j

�
(6)

This is called an Adams-Bashforth method. It is a

(q + 1)-step explicit method, and its truncation error

is of size O
�
hq+2

�
.

We give several of these numerical methods and their

corresponding truncation error terms En.



q = 0:

yn+1 = yn + hf (xn; yn) [Euler's method]

En =
1

2
h2Y 00(�n)

q = 1: Use the notation y0k = f(xk; yk).

yn+1 = yn +
h

2

h
3y0n � y0n�1

i
; n � 1

En =
5

12
h3Y 000(�n)

q = 2:

yn+1 = yn +
h

12
[23y0n � 16y0n�1 + 5y0n�2]

En =
3

8
h4Y (4)(�n)

q = 3:

yn+1 = yn +
h

24
[55y0n � 59y0n�1 + 37y0n�2 � 9y0n�3]

En =
251

720
h5Y (5)(�n)



CONVERGENCE. Note �rst that when computing
yn+1 using (6) that we require the q+1 initial values
y0; y1; : : : ; yq in order to compute yq+1. Then we can
continue using (6) to compute yn for n � q+1. The
initial values y1; : : : ; yq must be computed by some
other method, perhaps a Runge-Kutta method or per-
haps a lower order Adams-Bashforth method.

We can prove the following as regards the conver-
gence. Let

� (h) = max
0�j�q

���Y (xj)� yj���
�(h) = max

xq�xn�b
jEnj

Then there is an h0 > 0 such that for 0 < h � h0,
the numerical method of (6) is computable, and

jY (xn)� ynj � c
�
� (h) +

1

h
�(h)

�
(7)

for some constant c > 0. From the examples, we see
that

j�(h)j � dhq+2 max
x0�x�b

���Y (q+2)(x)���
and this is true for general q � 0.



STABILITY. All Adams-Bashforth methods possess
the basic type of numerical stability associated with
the earlier methods studied (Euler, backward Euler,
trapezoidal).

Consider solving

yn+1 = yn + h
qX
j=0

wj;qf
�
xn�j; yn�j

�
with initial values

yk = Y (xk); k = 0; 1; : : : ; q

Then perturb these initial values and solve

zn+1 = zn + h
qX
j=0

wj;qf
�
xn�j; zn�j

�
with

jzk � ykj � "; k = 0; 1; : : : ; q

for all su�ciently small values of h, say 0 < h � h0.
Then there is a constant c > 0 with

max
xq�xn�b

jzk � ykj � c"; 0 < h � h0 (8)



ADAMS-MOULTON METHODS

These methods are derived in the same manner as the

Adams-Bashforth methods. We begin with

Y (xn+1) = Y (xn) +
Z xn+1
xn

f (x; Y (x)) dx

Approximate the integrand using a polynomial inter-

polant of degree q. In particular, do the interpolation

using the q + 1 points
n
xn+1; xn; : : : ; xn�q+1

o
.

Denote the interpolant by bPq(x):
bPq(x) =

q�1X
j=�1

bLj;n(x)f �xn�j; Y (xn�j)�

=
q�1X
j=�1

bLj;n(x)Y 0 �xn�j�
with bLj;n(x), �1 � j � q � 1, denoting the La-

grange interpolation basis functions using the pointsn
xn+1; : : : ; xn�q+1

o
.



Substituting bPq(x) into the integral and integrating,
we obtain a formula

Y (xn+1) = Y (xn)

+h
q�1X
j=�1

vj;qf
�
xn�j; Y (xn�j)

�
+ bEn

hvj;q =
Z xn+1
xn

bLj;n(x) dx
and bEn denotes the error for this numerical integra-
tion over [xn; xn+1]. Dropping

bEn, we obtain a way
to approximate Y (xn+1) using values at the points

xn+1; : : : ; xn�q+1:

yn+1 = yn + h
q�1X
j=�1

vj;qf
�
xn�j; yn�j

�
This is called an Adams-Moulton method. It is a q-

step implicit method, and its truncation error is of size

O
�
hq+2

�
.

We give several of these numerical methods and their

corresponding truncation error terms bEn.



Recall the notation y0k = f(xk; yk), k � 0.

q = 0: It is the backward Euler method,

yn+1 = yn + hy
0
n+1bEn = �1

2
h2Y 00(�n)

q = 1: It is the trapezoidal method,

yn+1 = yn +
h

2
[y0n+1 + y

0
n]

bEn = � 1

12
h3Y (3)(�n)

q = 2:

yn+1 = yn +
h

12
[5y0n+1 + 8y

0
n � y0n�1]

bEn = � 1

24
h4Y (4)(�n)

q = 3:

yn+1 = yn +
h

24
[9y0n+1 + 19y

0
n � 5y0n�1 + y0n�2]

bEn = � 19

720
h5Y (5)(�n)



CONVERGENCE and STABILITY. The convergence

and stability properties of Adams-Bashforth methods

extend to Adams-Moulton methods. In particular, the

results given in (7) and (8).

From earlier, the backward Euler method and the

trapezoidal method are A-stable methods. This is not

true of higher order Adams-Moulton methods. But

such methods do have very desirable stability and con-

vergence properties. These are important enough as

to justify the cost of solving the implicit methods.

As earlier, we often use �xed point iteration to solve

the implicit equation. For the example with q = 2,

we use

y
(k+1)
n+1 = yn +

h

12
[5f(xn+1; y

(k)
n+1) + 8y

0
n � y0n�1]

for k = 0; 1; : : : The initial guess y
(0)
n+1 is often ob-

tained by using an Adams-Bashforth method of a com-

parable order (q = 1 or q = 2 in this case).



GENERAL REMARKS

Most large scale packages for solving di�erential equa-

tions to high accuracy are based on using Adams-

Bashforth and Adams-Moulton methods, usually vary-

ing both the stepsize h and the order q + 1 of the

method.

Matlab contains such a code, called ode113.


