MULTISTEP METHODS

All of the methods we have studied until now are ex-
amples of one-step methods. These methods use one
past value of the numerical solution, call it y5, in order
to compute a new value y,, 1. Multistep methods use
more than one past value, and these are often more
efficient than the earlier methods. For example,

h
Yn+1 = Ynts [3f(zn,yn) — f(Tn—1,yn—1)], n=>1
(1)
is an explicit, stable, second order method with trun-
cation error of size O (h3) We derive it below.

Multistep methods can be derived in a number of
ways, but the most popular methods are derived most
easily using numerical interpolation and numerical in-

tegration.



Integrate the equation

Y(z) = f(2,Y(2)) (2)
over the interval [xn, z,1]. This yields

Ln+1
Y (eni) =Y (@) + [ f @Y (@) de o (3)
Other intervals [zy,—p, Tp+1], p > 0, can also be used;
but the most popular multistep methods are obtained

with the choice [zn, T, 1]

Approximate the integral by replacing the integrand
with a polynomial interpolant of it. For example, the
linear interpolant of a function g(x) based on inter-
polation at {z,,_1,xn} is given by

P]_(x) _ (ﬂl'n o x) g(xn—l) —}IL_ (:13 T xn—l) g(l?n)
Integrate this over the interval [z, x4 1], obtaining

Ln Ln
/ o g(z) de = / o Pi(z) dz

Tn, In
3h h
= 79(5’37%) — 59 (xn—l)



By using methods similar to those used in §5.2, it can
be shown that

Ln+1 3h h
/ g(x) dr = —g(zn) — zg(Tp—1)
5 3 i
—h
+12 g (gn)

for some &,,, x,—1 < &, < zn11. Using this in (3)
with g(z) = Y'(x) = f (z, Y (x)) yields

Y (zy41) =Y (zn) + % [3f(zn,Y (zn))
—f(@n-1,Y (zn-1))]
FBIAYT (€,)
This leads to the method in (1) when the truncation
error term is dropped:

h
Yn+1 = Ynts [3f(zn,yn) — flxn—1,Yn—-1)], n>1

This is a two-step method (a second order recurrence
relation) and it requires values for both yg and y;
before proceeding to find y, for n > 2. A value for
y1 must be obtained by some other method.



NUMERICAL EXAMPLE. Consider solving

Y'(z) = —Y(z) + 2cos z,

Y(0) = 1

The true solution is Y (z) = sinx 4+ cosz. We give

numerical results for the method in (1) with stepsizes
h = 0.05 and 2h = 0.1.

r  yp(z)  Y(x) —yop(z) Y(z)—yp(z) Ratio
2 0.492597 2.13E-3 5.53E-4 3.9
4 -1.411170 2.98E-3 7.24E-4 4.1
6 -0.675004 -3.91E-3 -0.88E-4 4.0
3 0.843737 3.68E-4 1.21E-4 3.0
10 -1.383983 3.61E-3 8.90E-4 4.1

This is consistent with an error formula

Y (2n) = yn(an) = O (1?)

with a constant of proportionality that depends on xy,.

Compare the error to that for a second order Runge-

Kutta method.



It can be shown that if
Y(zg) —yg = O (hz) [usually zero]
Y(z1) —y1 = O (hz)

with standard assumptions on the differentiability of
f and Y, then we have

max |Y (xy) — T < ¢ h?
xogxn§b| (n) yh( n)|_

for some constant ¢ > 0.

Moreover, if
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Y (z0) — o
Y(z1) — 1

for constants cg, c1, then

Y (zn) — yp(wn) = D(wn)h® + O (h3)

with D(x) a continuous function for g < x < b.

&
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From this, we also have the Richardson error estimate

Y (@n) — yn(en) ~ Slun(e) — v ()]



NUMERICAL EXAMPLE
(continuation)

Continue with solving
Y'(z) = =Y () + 2cos z, Y(0) =1

using method (1). The true solution is Y (z) = sinxz+
cosx. We use stepsizes h = 0.05 and 2h = 0.1.

z un(z)  Y(z) —yp(x) 3lyn(z) — you()]
2 0.492597 5.53F — 4 5.26F — 4
4 —-1.411170 7.24F — 4 7.52FE — 4
6 —0.675004 —9.88FE —4 —9.73E — 4
8 0.843737 1.21F — 4 8.21F — 5

10 —1.383983 8.90F — 4 9.08F — 4




ADAMS-BASHFORTH METHODS

Recall the integrated formula

Ln+1
Y(wgt) =Y (@) + [ T f(@Y(@@) de (4)
Approximate the integrand using a polynomial inter-
polant of degree g. In particular, do the interpolation

using the ¢ + 1 points {zn,Tp_1,...,Tn—q}-
Denote the interpolant by Py(x):

q
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with L; ,(x), 0 < j < g, denoting the Lagrange inter-
polation basis functions using the points {zn, ..., ZTn—q}.



Substituting Py(x) into (4) and integrating, we obtain
a formula

Y(zpy1) = Y(2n)

q
+h Z wj,qf (a?n_j, Y(wn_])) + FEn, (5)
7=0

Lni1
hwj,q = /xn L]’n(flj) dx

and E), denotes the error for this numerical integra-
tion over [xp,x,+1]. Dropping Ey, we obtain a way
to approximate Y (z, 1) using values at past points

:Cfn,, xn_l, e e e ,:Un_q

q
Uni1=Yn+h > wiof (Tn_jivnj)  (6)
j=0

This is called an Adams-Bashforth method. It is a

(q + 1)-step explicit method, and its truncation error
is of size O (hq'|'2>.

We give several of these numerical methods and their
corresponding truncation error terms Ey,.



q = 0:

Yn+t1 = Yn+ hf(Tn,yn) [Euler’'s method]
1
IS §h2Y”(§n)

q = 1: Use the notation yl’~C = f(zk, yk)-

— Rrsy o > 1
Yn+1 — UYn + 9 [3yn yn—l} 9 n -~
5
Bn = h°Y"(€)
q=2
_ h / / /
Yn+l = Yn -t 5[23% — 16y,,_1 + 5y, o]
3
En = §h4Y(4)(£n)
q=73
. h / / / /
Yn+1 = Yn + £[55yn - 59yn—1 + 37yn—2 _ 9yn—3]
251
E, = ——hY0)(e,)

720



CONVERGENCE. Note first that when computing
Yn+1 Using (6) that we require the g + 1 initial values
Y0, Y1, - - - » Yq In order to compute y, 1. Then we can
continue using (6) to compute yp, for n > g+ 1. The
initial values y1, ...,y must be computed by some
other method, perhaps a Runge-Kutta method or per-
haps a lower order Adams-Bashforth method.

We can prove the following as regards the conver-
gence. Let

n(h) = max |V(z)) - y;
0(h) = max |Ep)|

Then there is an hg > 0 such that for 0 < h < hy,
the numerical method of (6) is computable, and

a0 +360) ()

for some constant ¢ > 0. From the examples, we see
that

Y (2n) —ynl < c

6(h)| < dh9t2 max |V{TT2)(g)|
ro<lxr<b

and this is true for general g > 0.



STABILITY. All Adams-Bashforth methods possess
the basic type of numerical stability associated with
the earlier methods studied (Euler, backward Euler,
trapezoidal).

Consider solving

q
Yntl =Yn+h Z wj,qf (xn—ja yn—j)
=0

with initial values
yk:Y(iEk), ]{:0,1,...,(]
Then perturb these initial values and solve

q
Znt1 =2n+h D wj.f (l‘n—j, Zn—j>
7=0

with
|Zk_yk|§€7 k:O,l,...,q

for all sufficiently small values of h, say 0 < h < hyg.
Then there is a constant ¢ > 0 with

max |zp — <ce, 0<h<h 8
xqungbm Y| < <hyg (8)



ADAMS-MOULTON METHODS

These methods are derived in the same manner as the
Adams-Bashforth methods. We begin with

Ln+1
Y (2041) =Y (@n) + [ "7 f (@Y (2) da
Approximate the integrand using a polynomial inter-

polant of degree g. In particular, do the interpolation
using the ¢ + 1 points {xn+1, Tn, ... ,xn_q+1}.

Denote the interpolant by Py(z):

q—1
=—1
Jq_l )
= > Ljn@)Y' (z0)
1=—1

with ij(x)’ —1 < 5 < q — 1, denoting the La-
grange interpolation basis functions using the points

{xn+1w°~7$n—q+1}-



Substituting ﬁq(x) into the integral and integrating,
we obtain a formula
Y(znt1) = Y(zn)

q—1

+h Z ’Uj7qf (acn_j, Y(a:'n_j)) + En
j=—1

L+l ~
hvj,q = /xn L]’n(a:) dx

and En denotes the error for this numerical integra-
tion over [xp, x,11]. Dropping E,, we obtain a way
to approximate Y (x,11) using values at the points

Ln4+1y- -+ Tn—qg+1-

q—1
Yntl=Yn+h > vj.f (wn_j, yn—j)
j=—1

This is called an Adams-Moulton method. It is a g-
step implicit method, and its truncation error is of size

O (h1+2).

We give several of these numerical methods and their

corresponding truncation error terms E,.



Recall the notation y; = f(xk,yx), k > 0.

q = 0: It is the backward Euler method,

Yn+l = Yn+ hypiq

A~ 1
En = _§h2Y”(€n)

q = 1: It is the trapezoidal method,

B h., /
Yn+1l = Yn T E[yn—kl -+ yn]
~ 1

— __—p3y(3)
En 12hY (fn)

Yn+1 = Yn _|_ [5yn—|—1 T Syn yf:z—l]
o~ 1

— _ —pAv4)
En 24hY (€n)

Yntl = Yn + [9yn+1 + 19y}, — 5y;,_1 + Yol

5 _ _E 5v-(5)
By = —— hPYO)(E,)



CONVERGENCE and STABILITY. The convergence
and stability properties of Adams-Bashforth methods
extend to Adams-Moulton methods. In particular, the
results given in (7) and (8).

From earlier, the backward Euler method and the
trapezoidal method are A-stable methods. This is not
true of higher order Adams-Moulton methods. But
such methods do have very desirable stability and con-
vergence properties. These are important enough as
to justify the cost of solving the implicit methods.

As earlier, we often use fixed point iteration to solve
the implicit equation. For the example with ¢ = 2,

we use
k+1 h L
y£z+1 ) = yn + E[5f($n—|—1a yf%zl) + 8y, — Yn_1]
for Kk = 0,1,... The initial guess 97(7,0421 is often ob-

tained by using an Adams-Bashforth method of a com-
parable order (¢ = 1 or ¢ = 2 in this case).



GENERAL REMARKS

Most large scale packages for solving differential equa-
tions to high accuracy are based on using Adams-
Bashforth and Adams-Moulton methods, usually vary-
ing both the stepsize h and the order ¢ + 1 of the
method.

Matlab contains such a code, called odel13.



