EXAMPLE OF ONE-STEP METHOD

Consider solving
y =y cosz, y(0)=1

Imagine writing a Taylor series for the solution Y (),
say initially about x = 0. Then

h? 3
Y (k) = Y(0) + hY'(0) + ?Y”(O) + Ey/"(o) T

We can calculate Y/(0) = Y (0) cos(0) = 1. How do
we calculate Y”/(0) and higher order derivatives?

Y'(z) = Y () cos(x)
Y"(x) = =Y (x)sin(x) + Y'(x) cos(x)

Y"(x) = =Y (z) cos(z) —2Y'(z) sin(z)+Y"(x) cos =



Then Y(0) =1, Y/(0) = 1,and
Y”(0) = —Y(0)sin(0) 4+ Y’(0) cos(0) = 1

Y"(0) = =Y (0) cos(0)—2Y"(0) sin(0)+Y"(0) cos0 = 0
Thus
Y(h) = Y(0)+ hY'(0) + £ ¥"(0)
—‘,—%3}/”’(0) 4 ...
= 14+ h+ %2 + -
We can generate as many terms as desired, obtaining

added accuracy as we do so. In this particular case,
the true solution is Y (x) = exp (sinx). Thus

h2  ht

Y(h)=1+h+ - —"ot



We can truncate the series after a particular order.
Then continue with the same process to generate ap-
proximations to Y (2h),Y (3h),... Letting =, = nh,
and using the order 2 Taylor approximation, we have

2
Y (@n 1) = Y (@n) HhY (en) b Y (wn) 4 Y’”(sn>

with zp, < &, < z,4+1. Drop the truncation error
term, and then define

Ynil = Yn + hy), + —yp
with

y;z = Yn cos(Tn)

yn = —ynsin(zn) + y;, cos(xn)

We give a numerical example of computing the nu-
merical solution with Taylor series methods of orders
2, 3, and 4. For a Taylor series of degree r, the global
error will be O (h"). The numerical example output
Is given in a separate file.



A 4t"_.ORDER EXAMPLE

Consider solving

y'=—y, y(0)=1
whose true solution is Y (z) = e~%. Differentiating

the equation
Yi(z) = —Y(x)
we obtain
v — _yvI— vy
N v Y, Y(4) —v

Then expanding Y (xy, 4+ h) in a Taylor series,

h? h3
Y(fI}n_|_1) — Yn —|— hY/ —|— ?Y” —|— EY”/
4
OO e,

24 120



Dropping the truncation error, we have the numerical
method

2 3 4 (4
ymlzyww%+%%+%ﬂ+%%)

2 3 4
(e
with yg = 1. By induction,

2 h3  pH\"
yn:<1—h—|— — + ) y

2 6 24
Recall that

h?  h3  h* RO

—h —
=1-h+———+——

’ 2 6 24 120

with 0 < & < h. Then
5 n
(e d5e )
5 n
= e nh (1 + %oeh_£>

- —n (1 n x1n2}646h—§)

Yn

Thus
Y (2n) — yn = e %" + O(hY)



We can introduce the Taylor series method for the
general problem

v = f(z,y), y(zg) = Yo

Simply imitiate what was done above for the particular
problem ¢’ = ycosz.

In general,

Y'(z) = f(z,Y(2))
Y'(z) fr (2, Y (2)) + fy (z,Y(2)) Y'(x)

= fo(z,Y(2)) + fy (2, Y(2)) f (2, Y(z))
Y (x) = f:m-|-2f:13yf‘|‘fyyf2‘|‘fyfa:‘|‘fy2f

and we can continue on this manner. Thus we can

calculate derivatives of any order for Y (x); and then
we can define Taylor series of any desired order.



This used to be considered much too arduous a task
for practical problems, because everything had to be
done by hand. But with symbolic programs such as
Mathematica and Maple, Taylor series can be con-
sidered a serious framework for numerical methods.
Programs that implement this in an automatic way,
with varying order and stepsize, are available.



RUNGE-KUTTA METHODS

Nonetheless, most researchers still consider Taylor se-
ries methods to be too expensive for most practical
problems (a point contested by others). This leads us
to look for other one-step methods which imitate the
Taylor series methods, without the necessity to cal-
culate the higher order derivatives. These are called
Runge-Kutta methods. There are a number of ways in
which one can approach Runge-Kutta methods, and |
will describe a fairly classical approach.

We begin by considering explicit Runge-Kutta meth-
ods of order 2. We want to write

Yn+1 = Yn + hF (xn, yn, h; f)

with F'(zp, yn, h; f) some carefully chosen approxima-
tion to f(x,y) on the interval [zp, 2y, 11]. In particu-
lar, write

F(SI}, Y, h; f) — 71f(337 ’y)—|—"}/2f(37—|—0éh, y—l—,Bhf(ZC, y))



F(x7 Y, h; f) — 71f($7 y)+’72f($—|—04h, y+6hf($7 y))

This is some kind of “average” derivative. Intuitively,
we should restrict o so that 0 < o < 1. In addition to

this, how should the constants 1, v5, @, 8 be chosen?

Introduce the truncation error

Th(Y)=Y(x+h)—[Y(x)+ hF(z,Y(x),h; f)]

and choose the constants to make T, (Y) = O(hP)
with p as large as possible.

By choosing

1
Oé:ﬁ:—a ’71:1_72
279

we can show

Tn(Y) = O(h%)



EXAMPLES

Yn+1 = Yn + hE(Tn, yn, h; f)
F(z,y,h; f) =v1f(z,y) +vof(z + ah,y + Bhf(z,y))

Case: 75 = % This leads to the trapezoidal Runge-
Kutta method.

h
Yn+1 = Ynto [f(zn, yn) + f(@n + h, yn + A f(2n, yn))]
(1)

Case: v, = 1. This leads to the midpoint Runge-
Kutta method.

Yn+1 = Yn + hf(zn + %7 Yn T %f(afna yn))  (2)

We can derive other second order formulas by choos-
ing other values for 5.

We illustrate these two methods by solving
Y'(z) = =Y (x) + 2cos z, Y(0)=1

with true solution Y (z) = sinz + cosx. Observe the
rate at which the error decreases when h is halved.



NUMERICAL EXAMPLE. Solve
Y'(z) = =Y (x) + 2cos z, Y(0)=1

The true solution is Y(x) = sinx 4+ cosxz. We give
numerical results for the Runge-Kutta method in (1)
with stepsizes h = 0.05 and 0.1.

h x yn(T) Error
0.1 2.0 0.491215673 1.93E -3

4.0 —1.407898629 —2.55E — 3
6.0 0.680696723 5.81E -5
8.0 0.841376339 2.48E — 3

10.0 —1.380966579 —2.13E —3
0.05 2.0 0.492682499 4.68E — 4

4.0 —1.409821234 —6.25E —4
6.0 0.680734664 2.01E -5
3.0 0.843254396 6.04E — 4
10.0 —1.382569379 —5.23E —4

Observe the ratio by which the error decreases when
h is halved, for each fixed . This is consistent with
an error formula

Y (2n) = yn(an) = O (1?)



FOUR-STAGE FORMULAS

We have just studied 2-stage formulas. To obtain a
higher rate of convergence, we must use more deriva-
tive evaluations. A 4-stage formula looks like

Yn+1 = Yn + hF(iUna Yn, I; f)
F(z,y,h; f) =71Vi+ 72V +v3V3 +v4Va

Vi = f(z,y)

f(z + azh,y + B 1hV7)

f(z + azh,y + B31hV1 + B3 2hV2)

Vi = f(xz+ agh,y+ h(Bs1V1+ Ba V2 + B4 3V3)

Again it can be analyzed by expanding the truncation

S5
[l

error

Th(Y)=Y(x+h)—[Y(x)+ hF(z,Y(x),h; f)]

in powers of h.



We attempt to choose the unknown coefficients so as
to force T, (Y) = O(hP) with p as large as possible.
In the above case, this can be done so that p = 5.
The algebra becomes very complicated, and we omit
it here.

The truncation error indicates the new error intro-
duced in each step of the numerical method. The to-
tal or global error for this case will be of size O (h4>.

The classical 4t"-order formula follows.

h
Yn+1 = Yn + o [V1 4 2vp 4 2V3 + V4]

Vi = f(z,y)

Vo = f(x—i—%h,y—l—%h\/l)
Vs = f(z+3h,y+3hV3)
V4 = f(:c—|—h,y—|—hV3)

The even more accurate 4"-order Ru nge-Kutta-Fehlberg
formula is given in the text, along with a numerical
example.



ERROR DISCUSSION

If a Runge-Kutta method satisfies
Th(Y) = O(hP)
with p > 2, then it can be shown that
Y (zn) —yn| < chP™Y, g <azpn <b
when solving the initial value problem

v = f(z,y), z0<zn <b, y(zo) = Yo

We can also go further and show that

Y (zn)—yp(zn) = D(xn)RP 14O (RP), z9 < axn <b
This can then be used to justify Richardson’s extrap-

olation.

For example, if Tp(Y) = O(h3), then Richardson’s
error estimate is

Y (@n) — yn(en) ~ 3 [on(en) — von(en)]



