
EXAMPLE OF ONE-STEP METHOD

Consider solving

y0 = y cosx; y(0) = 1

Imagine writing a Taylor series for the solution Y (x),

say initially about x = 0. Then

Y (h) = Y (0) + hY 0(0) +
h2

2
Y 00(0) +

h3

6
Y 000(0) + � � �

We can calculate Y 0(0) = Y (0) cos(0) = 1. How do

we calculate Y 00(0) and higher order derivatives?

Y 0(x) = Y (x) cos(x)

Y 00(x) = �Y (x) sin(x) + Y 0(x) cos(x)

Y 000(x) = �Y (x) cos(x)�2Y 0(x) sin(x)+Y 00(x) cosx



Then Y (0) = 1, Y 0(0) = 1;and

Y 00(0) = �Y (0) sin(0) + Y 0(0) cos(0) = 1

Y 000(0) = �Y (0) cos(0)�2Y 0(0) sin(0)+Y 00(0) cos 0 = 0

Thus

Y (h) = Y (0) + hY 0(0) + h2

2 Y
00(0)

+h
3

6 Y
000(0) + � � �

= 1 + h+ h2

2 + � � �
We can generate as many terms as desired, obtaining

added accuracy as we do so. In this particular case,

the true solution is Y (x) = exp (sinx). Thus

Y (h) = 1 + h+
h2

2
� h

4

8
+ � � �



We can truncate the series after a particular order.

Then continue with the same process to generate ap-

proximations to Y (2h); Y (3h); ::: Letting xn = nh,

and using the order 2 Taylor approximation, we have

Y (xn+1) = Y (xn)+hY
0(xn)+

h2

2
Y 00(xn)+

h3

6
Y 000(�n)

with xn � �n � xn+1. Drop the truncation error

term, and then de�ne

yn+1 = yn + hy
0
n +

h2

2
y00n; n � 0

with

y0n = yn cos(xn)

y00n = �yn sin(xn) + y0n cos(xn)

We give a numerical example of computing the nu-

merical solution with Taylor series methods of orders

2, 3, and 4. For a Taylor series of degree r, the global

error will be O (hr). The numerical example output

is given in a separate �le.



A 4th-ORDER EXAMPLE

Consider solving

y0 = �y; y(0) = 1

whose true solution is Y (x) = e�x. Di�erentiating
the equation

Y 0(x) = �Y (x)

we obtain

Y 00 = �Y 0 = Y

Y 000 = Y 0 = �Y; Y (4) = Y

Then expanding Y (xn + h) in a Taylor series,

Y (xn+1) = Yn + hY
0
n +

h2

2
Y 00n +

h3

6
Y 000n

+
h4

24
Y
(4)
n +

h5

120
Y (4)(�n)



Dropping the truncation error, we have the numerical

method

yn+1 = yn + hy0n +
h2

2 y
00
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with y0 = 1. By induction,

yn =

 
1� h+ h

2

2
� h
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Recall that

e�h = 1� h+ h
2

2
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h4

24
� h5
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with 0 < � < h. Then

yn =
�
e�h + h5

120e
��
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= e�nh
�
1 + h5
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= e�xn
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Thus

Y (xn)� yn = e�xn +O(h4)



We can introduce the Taylor series method for the

general problem

y0 = f(x; y); y(x0) = Y0

Simply imitiate what was done above for the particular

problem y0 = y cosx.

In general,

Y 0(x) = f (x; Y (x))

Y 00(x) = fx (x; Y (x)) + fy (x; Y (x))Y 0(x)
= fx (x; Y (x)) + fy (x; Y (x)) f (x; Y (x))

Y 000(x) = fxx + 2fxyf + fyyf2 + fyfx + f2yf

and we can continue on this manner. Thus we can

calculate derivatives of any order for Y (x); and then

we can de�ne Taylor series of any desired order.



This used to be considered much too arduous a task

for practical problems, because everything had to be

done by hand. But with symbolic programs such as

Mathematica and Maple, Taylor series can be con-

sidered a serious framework for numerical methods.

Programs that implement this in an automatic way,

with varying order and stepsize, are available.



RUNGE-KUTTA METHODS

Nonetheless, most researchers still consider Taylor se-

ries methods to be too expensive for most practical

problems (a point contested by others). This leads us

to look for other one-step methods which imitate the

Taylor series methods, without the necessity to cal-

culate the higher order derivatives. These are called

Runge-Kutta methods. There are a number of ways in

which one can approach Runge-Kutta methods, and I

will describe a fairly classical approach.

We begin by considering explicit Runge-Kutta meth-

ods of order 2. We want to write

yn+1 = yn + hF (xn; yn; h; f)

with F (xn; yn; h; f) some carefully chosen approxima-

tion to f(x; y) on the interval [xn; xn+1]. In particu-

lar, write

F (x; y; h; f) = 
1f(x; y)+
2f(x+�h; y+�hf(x; y))



F (x; y; h; f) = 
1f(x; y)+
2f(x+�h; y+�hf(x; y))

This is some kind of \average" derivative. Intuitively,

we should restrict � so that 0 � � � 1. In addition to
this, how should the constants 
1; 
2; �; � be chosen?

Introduce the truncation error

Tn(Y ) = Y (x+ h)� [Y (x) + hF (x; Y (x); h; f)]

and choose the constants to make Tn(Y ) = O(hp)

with p as large as possible.

By choosing

� = � =
1

2
2
; 
1 = 1� 
2

we can show

Tn(Y ) = O(h
3)



EXAMPLES

yn+1 = yn + hF (xn; yn; h; f)

F (x; y; h; f) = 
1f(x; y) + 
2f(x+ �h; y + �hf(x; y))

Case: 
2 =
1
2. This leads to the trapezoidal Runge-

Kutta method.

yn+1 = yn+
h

2
[f(xn; yn) + f(xn + h; yn + hf(xn; yn))]

(1)

Case: 
2 = 1. This leads to the midpoint Runge-

Kutta method.

yn+1 = yn + hf(xn +
h
2 ; yn +

h
2f(xn; yn)) (2)

We can derive other second order formulas by choos-

ing other values for 
2.

We illustrate these two methods by solving

Y 0(x) = �Y (x) + 2 cosx; Y (0) = 1

with true solution Y (x) = sinx+ cosx. Observe the

rate at which the error decreases when h is halved.



NUMERICAL EXAMPLE. Solve

Y 0(x) = �Y (x) + 2 cosx; Y (0) = 1

The true solution is Y (x) = sinx + cosx. We give
numerical results for the Runge-Kutta method in (1)
with stepsizes h = 0:05 and 0:1.

h x yh(x) Error
0:1 2:0 0:491215673 1:93E� 3

4:0 �1:407898629 �2:55E� 3
6:0 0:680696723 5:81E� 5
8:0 0:841376339 2:48E� 3
10:0 �1:380966579 �2:13E� 3

0:05 2:0 0:492682499 4:68E� 4
4:0 �1:409821234 �6:25E� 4
6:0 0:680734664 2:01E� 5
8:0 0:843254396 6:04E� 4
10:0 �1:382569379 �5:23E� 4

Observe the ratio by which the error decreases when
h is halved, for each �xed x. This is consistent with
an error formula

Y (xn)� yh(xn) = O
�
h2
�



FOUR-STAGE FORMULAS

We have just studied 2-stage formulas. To obtain a

higher rate of convergence, we must use more deriva-

tive evaluations. A 4-stage formula looks like

yn+1 = yn + hF (xn; yn; h; f)

F (x; y; h; f) = 
1V1 + 
2V2 + 
3V3 + 
4V4

V1 = f(x; y)

V2 = f(x+ �2h; y + �2;1hV1)

V3 = f(x+ �3h; y + �3;1hV1 + �3;2hV2)

V4 = f(x+ �4h; y + h(�4;1V1 + �4;2V2 + �4;3V3)

Again it can be analyzed by expanding the truncation

error

Tn(Y ) = Y (x+ h)� [Y (x) + hF (x; Y (x); h; f)]

in powers of h.



We attempt to choose the unknown coe�cients so as

to force Tn(Y ) = O(hp) with p as large as possible.

In the above case, this can be done so that p = 5.

The algebra becomes very complicated, and we omit

it here.

The truncation error indicates the new error intro-

duced in each step of the numerical method. The to-

tal or global error for this case will be of size O
�
h4
�
.

The classical 4th-order formula follows.

yn+1 = yn +
h

6
[V1 + 2v2 + 2V3 + V4]

V1 = f(x; y)

V2 = f(x+ 1
2h; y +

1
2hV1)

V3 = f(x+ 1
2h; y +

1
2hV2)

V4 = f(x+ h; y + hV3)

The even more accurate 4th-order Runge-Kutta-Fehlberg

formula is given in the text, along with a numerical

example.



ERROR DISCUSSION

If a Runge-Kutta method satis�es

Tn(Y ) = O(h
p)

with p � 2, then it can be shown that

jY (xn)� ynj � chp�1; x0 � xn � b

when solving the initial value problem

y0 = f(x; y); x0 � xn � b; y(x0) = Y0

We can also go further and show that

Y (xn)�yh(xn) = D(xn)hp�1+O (hp) ; x0 � xn � b

This can then be used to justify Richardson's extrap-

olation.

For example, if Tn(Y ) = O(h3), then Richardson's

error estimate is

Y (xn)� yh(xn) �
1

3
[yh(xn)� y2h(xn)]


