
NUMERICAL STABILITY;

IMPLICIT METHODS

When solving the initial value problem

Y 0(x) = f(x; Y (x)); x0 � x � b
Y (x0) = Y0

we know that small changes in the initial data Y0 will

result in small changes in the solution of the di�eren-

tial equation. More precisely, consider the perturbed

problem

Y 0"(x) = f(x; Y"(x)); x0 � x � b
Y"(x0) = Y0 + "

Then assuming f(x; z) and @f(x; z)=@z are continu-

ous for x0 � x � b; �1 < z <1, we have

max
x0�x�b

jY"(x)� Y (x)j � c j"j

for some constant c > 0. We would like our numerical

methods to have a similar property.



Consider the Euler method

yn+1 = yn + hf (xn; yn) ; n = 0; 1; : : :

y0 = Y0

and then consider the perturbed problem

y"n+1 = y"n + hf (xn; y
"
n) ; n = 0; 1; : : :

y"0 = Y0 + "

We can show the following.

max
x0�xn�b

jy"n � ynj � bc j"j
for some constant bc > 0 and for all su�ciently small

values of the stepsize h.

This implies that Euler's method is stable, and in the

same manner as was true for the original di�erential

equation problem.



The general idea of stability for a numerical method

is essentially that given above for Eulers's method.

There is a general theory for numerical methods for

solving the initial value problem

Y 0(x) = f(x; Y (x)); x0 � x � b
Y (x0) = Y0

If the truncation error in a numerical method has order

2 or greater, then the numerical method is stable if

and only if it is a convergent numerical method.

Note that Euler's method has a truncation error of

order 2.

The numerical methods studied in this chapter are

both stable and convergent.



All of these general results on stability and conver-

gence are valid if the stepsize h is su�ciently small.

What is meant by this?

Rather than studying this for a general problem, we

restrict our interest to the model problem

Y 0(x) = �Y (x); x � 0; Y (0) = 1

The analysis for this problem is generally applicable

to the more general di�erential equation problem.

The true solution is Y (x) = e�x. When � < 0 or �

is complex with Real(�) < 0, we have Y (x) ! 0 as

x ! 1. We would like the same to be true for the
numerical solution of the model problem.

We begin by studying Euler's method applied to the

model problem.



EULER'S METHOD

AND THE MODEL PROBLEM

Apply Euler's method to the model problem.

yn+1 = yn + h�yn

= (1 + h�) yn; n = 0; 1; : : :

with y0 = 1. By induction,

yn = (1 + h�)
n ; n � 0

The numerical solution yn ! 0 as n!1 if and only

if

j1 + h�j < 1

In the case � is real and negative, this is equivalent to

�2 < h� < 0

If j�j is quite large, then h must be correspondingly
small. Usually the truncation error does not require

such a small value of h; it is needed only for stability.



NUMERICAL EXAMPLE: Consider the problem

Y 0(x) = �Y (x) + (1� �) cos(x)� (1 + �) sin(x)

with Y (0) = 1. The true solution is Y (x) = sin(x) +

cos(x). We use Euler's method and give numerical

results for varying � and h are given. The truncation

error Tn+1 =
h2

2 Y
00(�n) does not depend on �, but

the numerical solution does.

� x Error: Error: Error:
h = 0:5 h = 0:1 h = 0:01

�1 1 �2:46E� 1 �4:32E� 2 �4:22E� 3
3 �2:66E� 2 �6:78E� 3 �7:22E� 4
5 2:72E� 1 4:91E� 2 4:81E� 3

�10 1 3:98E� 1 �6:99E� 3 �6:99E� 4
3 1:11E + 2 3:86E� 3 3:64E� 4
5 2:83E + 4 3:78E� 3 3:97E� 4

�50 1 3:26E + 0 1:06E + 3 �1:39E� 4
3 1:08E + 6 1:17E + 15 8:25E� 5
5 3:59E + 11 1:28E + 27 7:00E� 5



ABSOLUTE STABILITY

The set of values of h� for which the numerical solu-

tion yn ! 0 as n!1 is called the region of absolute

stability of the numerical method. We allow � to be

complex, restricting it with Real(�) < 0.

With Euler's method, this region is the set of all com-

plex numbers z = h� for which

j1 + zj < 1

or equivalently,

jz � (�1)j < 1

This is a circle of radius one in the complex plane,

centered at the complex number �1 + 0 � i.

If a numerical method has no restrictions on � in order

to have yn ! 0 as n ! 1, we say the numerical
method is A-stable.



THE BACKWARD EULER METHOD

Expand the function Y (x) as a linear Taylor polyno-

mial about xn+1:

Y (x) = Y (xn+1) + (x� xn+1)Y 0(xn+1)
+12 (x� xn+1)

2 Y 00(�n)

with �n between x and xn+1. Let x = xn, solve for

Y (xn+1), and use the di�erential equation to evaluate

Y 0(xn+1):

Y (xn+1) = Y (xn) + hY
0(xn+1)�

1

2
h2Y 00(�n)

= Y (xn) + hf (xn+1; Y (xn+1))�
1

2
h2Y 00(�n)

with �n between xn and xn+1. The backward Euler

method is obtained by dropping the truncation error:

yn+1 = yn + hf (xn+1; yn+1) ; n = 0; 1; : : :

y0 = Y0

The truncation is essentially of the same size as for

Euler's method, but of opposite sign.



Apply the backward Euler method to the model prob-

lem

Y 0(x) = �Y (x); x � 0; Y (0) = 1

This yields

yn+1 = yn + h�yn+1

yn+1 =
1

1� h�
yn; n = 0; 1; : : :

with y0 = 1. By induction,

yn =
�

1

1� h�

�n
; n = 0; 1; : : :

We want to know when yn ! 1 as n ! 1. This
will be true if ���� 1

1� h�

���� < 1
The hypothesis that � < 0 or Real(�) < 0 is su�-

cient to show this is true, regardless of the size of the

stepsize h. Thus the backward Euler method is an

A-stable numerical method.



NUMERICAL EXAMPLE

We apply the backward Euler method to the problem

Y 0(x) = �Y (x) + (1� �) cos(x)� (1 + �) sin(x)

with Y (0) = 1. The true solution is Y (x) = sin(x) +

cos(x). We give numerical results with varying �

and with h = 0:5. The truncation error Tn+1 =

�h22 Y
00(�n) does not depend on �, but the numeri-

cal solution does. But in contrast to Euler's method,

there are no stability problems with the numerical so-

lution.

x Error: Error: Error:
� = �1 � = �10 � = �50

2 2:08E� 1 1:97E� 2 3:60E� 3
4 �1:63E� 1 �3:35E� 2 �6:94E� 3
6 �7:04E� 2 8:19E� 3 2:18E� 3
8 2:22E� 1 2:67E� 2 5:13E� 3
10 �1:14E� 1 �3:04E� 2 �6:45E� 3



SOLVING THE BACKWARD

EULER METHOD

For a general di�erential equation, we must solve

yn+1 = yn + hf (xn+1; yn+1) (1)

for each n. In most cases, this is a root�nding problem

for the equation

z = yn + hf (xn+1; z) (2)

with the root z = yn+1. Such numerical methods

(1) for solving di�erential equations are called implicit

methods.

Methods in which yn+1 is given explicitly are called ex-

plicit methods. Euler's method is an explicit method.



Fixed point iteration is often used to solve (2):

y
(k+1)
n+1 = yn+hf

�
xn+1; y

(k)
n+1

�
; k = 0; 1; : : : (3)

For an initial guess, we use y
(0)
n+1 = yn or something

even better. The iteration error satis�es

yn+1 � y
(k+1)
n+1 � h@f(xn+1; yn+1)

@y

�
yn+1 � y

(k)
n+1

�
(4)

We have convergence if

h

�����@f(xn+1; yn+1)@y

����� < 1 (5)

which is true if h is su�ciently small. If this is too re-

strictive on h, then another root�nding method must

be used to solve (2).



THE TRAPEZOIDAL METHOD

The backward Euler method is stable, but still is lack-

ing in accuracy. A similar but more accurate numer-

ical method is the trapezoidal method :

yn+1 = yn +
h

2
[f (xn; yn) + f (xn+1; yn+1)] ;

n = 0; 1; : : :
(6)

It is derived by applying the simple trapezoidal numer-

ical integration rule to the equation

Y (xn+1) = Y (xn) +
Z xn+1
xn

f (t; Y (t)) dt

obtaining

Y (xn+1) = Y (xn) +
h

2
[f (xn; Y (xn))

+f (xn+1; Y (xn+1))]�
h3

12
Y 000(�n)

The method (6) results from dropping the truncation

error term.



As with the backward Euler method, the equation (6)

is a nonlinear equation with a root of yn+1. Again,

�xed point iteration can be used to solve it:

y
(j+1)
n+1 = yn +

h

2
[f(xn; yn) + f(xn+1; y

(j)
n+1)]

for j = 0; 1; 2; : : : The iteration will converge if�����h2 � @f(xn+1; yn+1)@z

����� < 1
provided also that y

(0)
n+1 is a su�ciently good initial

guess. Often we use

y
(0)
n+1 = yn + hf (xn; yn)

or

y
(0)
n+1 = yn +

h

2
[3f(xn; yn)� f(xn�1; yn�1)]

These latter formulas are called predictor formulas.

The �rst is simply Euler's method. The second is

an Adams-Bashforth method of order 2 ; and it is an

explicit 2-step method. Other root�nding methods

are used for more di�cult problems.



CONVERGENCE: We can show that for all su�-

ciently small values of h,

max
x0�xn�b

jY (xn)� ynj � ch2 max
x0�x�b

���Y 000(x)���
The constant c depends on the Lipschitz constant K

for f (x; z):

K = max
x0�x�b
�1<z<1

�����@f(x; z)@z

�����
Thus it converges more rapidly than either the Euler

method or the backward Euler method.



STABILITY: The trapezoidal method is absolutely

stable. Apply the method to the problem

Y 0(x) = �Y (x); x � 0; Y (0) = 1

Then

yn+1 = yn +
h

2
[�yn + �yn+1]

with y0 = 1. Solving for yn+1,

yn+1 =

0@1 + h�
2

1� h�
2

1A yn; n � 0

By induction,

yn =

0@1 + h�
2

1� h�
2

1An ; n � 0

Then for � real and negative, and also for � com-

plex with Real (�) < 0, we can use this formula to

show yn ! 0 as n!1. This shows the trapezoidal
method is absolutely stable.



NUMERICAL EXAMPLE: We apply the trapezoidal

method to the problem

Y 0(x) = �Y (x) + (1� �) cos(x)� (1 + �) sin(x)

with Y (0) = 1. The true solution is Y (x) = sin(x) +

cos(x). We give numerical results with varying �

and with h = 0:5. The truncation error Tn+1 =

�h312Y
000(�n) does not depend on �, but the numerical

solution does. As with the backward Euler method,

there are no stability problems with the numerical so-

lution. Moreover, it converges more rapidly than does

the backward Euler method.

x Error: Error: Error:
� = �1 � = �10 � = �50

2 �1:13E� 2 �2:78E� 3 �7:91E� 4
4 �1:43E� 2 �8:91E� 5 �8:91E� 5
6 2:02E� 2 2:77E� 3 4:72E� 4
8 �2:86E� 3 �2:22E� 3 �5:11E� 4
10 �1:79E� 2 �9:23E� 4 �1:56E� 4



STIFF PROBLEMS: Linear equations

Y 0(x) = �Y (x) + g(x)

with Real (�) < 0; jReal (�)j large, are called sti� dif-
ferential equations. For general equations, the role of

� is replaced by

@f(x; Y (x))

@z

With many numerical methods, the truncation error

for these equations may be satisfactorily small with

not too small a value of h. But the large size of

jReal (�)j may force h to be smaller so that �h will
be in the stability region of the numerical method.

For sti� di�erential equations, one must use a numer-

ical method with a large region of absolute stability,

or else h must be chosen very small.



The backward Euler method and the trapezoidal method

are very desirable because their stability region con-

tains all �h where Real (�) < 0. The backward Euler

method and the trapezoidal rule have convergence or-

ders 1 and 2, respectively.

The iteration method for calculating yn+1 in

yn+1 = yn + hf (xn+1; yn+1)

or

yn+1 = yn +
h

2
[f (xn; yn) + f (xn+1; yn+1)]

must be something like Newton's method, something

where the convergence is not a�ected by the size of

�h.


