
DIFFERENTIAL EQUATIONS

A principal model of physical phenomena.

The equation:

y0 = f(x; y)

The initial value:

y(x0) = Y0

Find solution Y (x) on some interval x0 � x � b: To-
gether these two conditions constitute an initial value

problem.

We will study methods for solving systems of �rst or-

der equations, but we begin with a single equation.

Many of the crucial ideas in the numerical analysis

arise from properties of the original equation.



SPECIAL CASES

1. y0(x) = �y(x) + b(x); x � x0;
f(x; z) = �z + b(x).

General solution:

Y (x) = ce�x +
Z x
x0
e�(x�t)b(t)dt

with c arbitrary. With y(x0) = Y0,

Y (x) = Y0e
�(x�x0) +

Z x
x0
e�(x�t)b(t)dt

2. y0(x) = ay (x)2; f(x; z) = az2.
General solution:

Y (x) =
�1

ax+ c
; c arbitrary

With y(x0) = Y0, use

c = �ax0 �
1

Y0



3. y0(x) = � [y(x)]2 + y(x); f(x; z) = �z2 + z.
General solution:

Y (x) =
1

1 + ce�x

4. \Separable equations": y0(x) = g(y(x))h(x);
f(x; z) = g(z)h(x).

General solution: Write

1

g(y)

dy

dx
= h(x)

Let z = y(x); dz = y0(x)dx. Evaluate the inte-
grals in Z

dz

g(z)
=
Z
h(x)dx

Replace z by Y (x) and solve for Y (x), if possible.



DIRECTION FIELDS

At each point (x; y) at which the function f is de�ned,

evaluate it to get f(x; y). Then draw in a small line

segment at this point with slope f(x; y). With enough

of these, we have a picture of how the solutions behave

for the di�erential equation

y0 = f(x; y)

Consider the di�erential equation

y0 = �y + 2 cosx

We can draw direction �elds by hand by the method

described above, by using the Matlab program given in

the book; or we can use the Matlab program provided

in the class account.



Direction �eld for y0 = �y + 2 cosx. Also shown are
example solution curves



SOLVABILITY THEORY

Consider whether there is a function Y (x) which sat-

is�es

y0 = f(x; y); x � x0; y(x0) = Y0 (1)

Assume there is some open set D that is subset of the

xy-plane and that contains (x0; Y0); for which:

1. If two points (x; y) and (x; z) are contained in D,

then the line segment joining them is also contained

in D.

2. f(x; y) is continuous for all points (x; y) contained

in D.

3. @f(x; y)=@y is continuous for all points (x; y) con-

tained in D.

Then there is an interval [c; d] containing x0 and there

is a unique function Y (x) de�ned on [c; d] which sat-

is�es (1), with the graph of Y (x) contained in D.



THE LIPSCHITZ CONDITION

The preceding condition on the partial derivative of f
is an easy way to specify that the following condition
is satis�ed. It is the condition that is really needed.
The Lipschitz condition: There is a non-negative con-
stant K for which

jf(x; y)� f(x; z)j � K jy � zj
for all points (x; y), (x; z) in the regionD. In practice,
we use

K = max
(x;y)2D

�����@f(x; y)@y

�����
The Lipschitz condition occurs throughout our treat-
ment of both the theory of di�erential equations and
the theory of the numerical methods for their solution.

For this course, we simplify matters by assuming

K = max
�1<y<1
x0�x�b

�����@f(x; y)@y

����� <1
with [x0; b] the interval on which we are solving the
initial value problem.



EXAMPLE

Let � > 0 be a given constant, and consider solving

y0 =
2x

�2
y2; x � 0; y(0) = 1

Then the partial derivative is

fy(x; y) =
4xy

�2

and fy(0; 1) = 0. Thus fy(x; y) is small for (x; y) near

to (0; 1), and it is continuous for all (x; y). Choose

D = f(x; y) : jxj � 1; jyj � Bg

for some B > 0. Then there is a solution Y (x) on

some interval [c; d] containing x0 = 0. How big is

[c; d]? In this case,

Y (x) =
�2

�2 � x2
; �� < x < �

If � is small, then the interval is small.



IMPROVED SOLVABILITY THEORY

Assume there is a Lipschitz constant K for which f

satis�es

jf(x; y)� f(x; z)j � K jy � zj

for all (x; y); (x; z) satisfying

x0 � x � b; �1 < y; z <1

Then the initial value problem

y0 = f(x; y); x0 � x0 � b; y(x0) = Y0

has a solution Y (x) on the entire interval [x0; b].

Example: Consider y0 = y+g(x) with g(x) continuous
for all x. Then

y0 = y + g(x); y(x0) = Y0

has a solution Y (x) has a unique continuous solution

for �1 < x <1.



STABILITY

The concept of stability refers in a loose sense to what

happens to the solution Y (x) of an initial value prob-

lem if we make a small change in the data, which

includes both the di�erential equation and the initial

value.

If small changes in the data lead to large changes in

the solution, then we say the initial value problem is

unstable or ill-conditioned ; whereas if small changes

in the data lead to small changes in the solution, we

call the problem stable or well-conditioned.



EXAMPLE

Consider solving

y0 = 100y � 101e�x; y(0) = 1 (2)

This has a solution of Y (x) = e�x.

Now consider the perturbed problem

y0 = 100y � 101e�x; y(0) = 1 + �

where � is some small number. The solution of this is

Y�(x) = e�x + �e100x, and

Y�(x)� Y (x) = �e100x

Thus Y�(x) � Y (x) increases very rapidly as x in-

creases, and we say (2) is an \unstable"or \ill-conditioned"

problem.


