THE EIGENVALUE PROBLEM

Let A be an $n \times n$ square matrix. If there is a number λ and a column vector $v \neq 0$ for which

$$
A v=\lambda v
$$

then we say λ is an eigenvalue of A and v is an associated eigenvector. Note that if v is an eigenvector, then any nonzero multiple of v is also an eigenvector for the same eigenvalue λ.

Example: Let

$$
A=\left[\begin{array}{ll}
1.25 & 0.75 \tag{1}\\
0.75 & 1.25
\end{array}\right]
$$

The eigenvalue-eigenvector pairs for A are

$$
\begin{array}{ll}
\lambda_{1}=2, & v^{(1)}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \tag{2}\\
\lambda_{2}=0.5, & v^{(2)}=\left[\begin{array}{r}
-1 \\
1
\end{array}\right]
\end{array}
$$

Eigenvalues and eigenvectors are often used to give additional intuition to the function

$$
F(x)=A x, \quad x \in \mathbb{R}^{n} \text { or } \mathbb{C}^{n}
$$

Example. The eigenvectors in the preceding example (2) form a basis for \mathbb{R}^{2}. For $x=\left[x_{1}, x_{2}\right]^{T}$,

$$
\begin{aligned}
x & =c_{1} v^{(1)}+c_{2} v^{(2)} \\
c_{1} & =\frac{x_{1}+x_{2}}{2}, \quad c_{2}=\frac{x_{2}-x_{1}}{2}
\end{aligned}
$$

Using (2), the function

$$
F(x)=A x, \quad x \in \mathbb{R}^{2}
$$

can be written as

$$
\begin{aligned}
F(x) & =c_{1} A v^{(1)}+c_{2} A v^{(2)} \\
& =2 c_{1} v^{(1)}+\frac{1}{2} c_{2} v^{(2)}, \quad x \in \mathbb{R}^{2}
\end{aligned}
$$

The eigenvectors provide a better way to understand the meaning of $F(x)=A x$.

See the following Figure 1 and Figure 2.

Figure 1: Decomposition of x

Figure 2: Decomposition of $A x$

How to calculate λ and v ? Rewrite $A v=\lambda v$ as

$$
\begin{equation*}
(\lambda I-A) v=0, \quad v \neq 0 \tag{3}
\end{equation*}
$$

a homogeneous system of linear equations with the coefficient matrix $\lambda I-A$ and the nonzero solution v. This can be true if and only if

$$
f(\lambda) \equiv \operatorname{det}(\lambda I-A)=0
$$

The function $f(\lambda)$ is called the characteristic polynomial of A, and its roots are the eigenvalues of A. Assuming A has order n,

$$
\begin{equation*}
f(\lambda)=\lambda^{n}+\alpha_{n-1} \lambda^{n-1}+\cdots+\alpha_{1} \lambda+\alpha_{0} \tag{4}
\end{equation*}
$$

For the case $n=2$,

$$
\begin{aligned}
f(\lambda) & =\operatorname{det}\left[\begin{array}{cc}
\lambda-a_{11} & -a_{12} \\
-a_{21} & \lambda-a_{22}
\end{array}\right] \\
& =\left(\lambda-a_{11}\right)\left(\lambda-a_{22}\right)-a_{21} a_{12} \\
& =\lambda^{2}-\left(a_{11}+a_{22}\right) \lambda+a_{11} a_{22}-a_{21} a_{12}
\end{aligned}
$$

The formula (4) shows that a matrix A of order n can have at most n distinct eigenvalues.

Example. Let

$$
A=\left[\begin{array}{rrr}
-7 & 13 & -16 \tag{5}\\
13 & -10 & 13 \\
-16 & 13 & -7
\end{array}\right]
$$

Then

$$
\begin{aligned}
f(\lambda) & =\operatorname{det}\left[\begin{array}{ccc}
\lambda+7 & -13 & 16 \\
-13 & \lambda+10 & -13 \\
16 & -13 & \lambda+7
\end{array}\right] \\
& =\lambda^{3}+24 \lambda^{2}-405 \lambda+972
\end{aligned}
$$

is the characteristic polynomial of A.

The roots are

$$
\begin{equation*}
\lambda_{1}=-36, \quad \lambda_{2}=9, \quad \lambda_{3}=3 \tag{6}
\end{equation*}
$$

Finding an eigenvector. For $\lambda=-36$, find an associated eigenvector v by solving $(\lambda I-A) v=0$, which becomes

$$
\begin{gathered}
(-36 I-A) v=0 \\
{\left[\begin{array}{rrr}
-29 & -13 & 16 \\
-13 & -26 & -13 \\
16 & -13 & -29
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]}
\end{gathered}
$$

If $v_{1}=0$, then the only solution is $v=0$. Thus $v_{1} \neq 0$, and we arbitrarily choose $v_{1}=1$. This leads to the system

$$
\begin{aligned}
& -13 v_{2}+16 v_{3}=29 \\
& -26 v_{2}-13 v_{3}=13 \\
& -13 v_{2}-29 v_{3}=-16
\end{aligned}
$$

The solution is $v_{2}=-1, v_{3}=1$. Thus the eigenvector v for $\lambda=-36$ is

$$
\begin{equation*}
v^{(1)}=[1,-1,1]^{T} \tag{7}
\end{equation*}
$$

or any nonzero multiple of this vector.

SYMMETRIC MATRICES

Recall that A symmetric means $A^{\top}=A$, assuming that A contains only real number entries. Such matrices are very common in applications.

Example. A general 3×3 symmetric matrix looks like

$$
A=\left[\begin{array}{lll}
a & b & c \\
b & d & e \\
c & e & f
\end{array}\right]
$$

A general $n \times n$ matrix $A=\left[a_{i, j}\right]$ is symmetric if and only if

$$
a_{i, j}=a_{j, i}, \quad 1 \leq i, j \leq n
$$

Following is a very important set of results for symmetric matrices, explaining much of their special character.

THEOREM. Let A be a real, symmetric, $n \times n$ matrix. Then there is a set of n eigenvalue-eigenvector pairs $\left\{\lambda_{i}, v^{(i)}\right\}, 1 \leq i \leq n$ that satisfy the following properties.
(i) The numbers $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are all of the roots of the characteristic polynomial $f(\lambda)$ of A, repeated according to their multiplicity. Moreover, all the λ_{i} are real numbers.
(ii) If the column matrices $v^{(i)}, 1 \leq i \leq n$ are regarded as vectors in n-dimensional space, then they are mutually perpendicular and of length 1 :

$$
\begin{aligned}
v^{(i) \top} v^{(j)} & =0, & & 1 \leq i, j \leq n, \quad i \neq j \\
v^{(i) \top} v^{(i)} & =1, & & 1 \leq i \leq n
\end{aligned}
$$

(iii) For each column vector $x=\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{\top}$, there is a unique choice of constants c_{1}, \ldots, c_{n} for which

$$
x=c_{1} v^{(1)}+\cdots+c_{n} v^{(n)}
$$

The constants are given by

$$
c_{i}=\sum_{j=1}^{n} x_{j} v_{j}^{(i)}=x^{\top} v^{(i)}, \quad 1 \leq i \leq n
$$

where $v^{(i)}=\left[v_{1}^{(i)}, \ldots, v_{n}^{(i)}\right]^{\top}$.
(iv) Define the matrix U of order n by

$$
\begin{equation*}
U=\left[v^{(1)}, v^{(2)}, \ldots, v^{(n)}\right] \tag{8}
\end{equation*}
$$

Then

$$
U^{\top} A U=D \equiv\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & \lambda_{n}
\end{array}\right]
$$

and

$$
\begin{equation*}
U U^{\top}=U^{\top} U=I \tag{9}
\end{equation*}
$$

$A=U D U^{\top}$ is a useful decomposition of A.

Example. Recall

$$
A=\left[\begin{array}{ll}
1.25 & 0.75 \\
0.75 & 1.25
\end{array}\right]
$$

and its eigenvalue-eigenvector pairs

$$
\begin{array}{ll}
\lambda_{1}=2, & v^{(1)}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
\lambda_{2}=0.5, & v^{(2)}=\left[\begin{array}{r}
-1 \\
1
\end{array}\right]
\end{array}
$$

Figure 1 illustrates that the eigenvectors are perpendicular. To have them be of length 1, replace the above by

$$
\begin{array}{ll}
\lambda_{1}=2, & v^{(1)}=\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right] \\
\lambda_{2}=0.5, & v^{(2)}=\left[\begin{array}{c}
\frac{-1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right]
\end{array}
$$

that are multiples of the original $v^{(i)}$.

The matrix U of (8) is given by

$$
U=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right]
$$

Easily, $U^{\top} U=I$.

Also,

$$
\begin{aligned}
& U^{\top} A U \\
& =\left[\begin{array}{ll}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right]\left[\begin{array}{ll}
1.25 & 0.75 \\
0.75 & 1.25
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right] \\
& =\left[\begin{array}{ll}
2 & 0 \\
0 & 0.5
\end{array}\right]
\end{aligned}
$$

as specified in (9).

NONSYMMETRIC MATRICES

Nonsymmetric matrices have a wide variety of possible behaviour. We illustrate with two simple examples some of the possible behaviour.

Example. We illustrate the existence of complex eigenvalues. Let

$$
A=\left[\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right]
$$

The characteristic polynomial is

$$
f(\lambda)=\operatorname{det}\left[\begin{array}{cc}
\lambda & -1 \\
1 & \lambda
\end{array}\right]=\lambda^{2}+1
$$

The roots of $f(\lambda)$ are complex,

$$
\lambda_{1}=i \equiv \sqrt{-1}, \quad \lambda_{2}=-i
$$

and corresponding eigenvectors are

$$
v^{(1)}=\left[\begin{array}{c}
i \\
-1
\end{array}\right], \quad v^{(2)}=\left[\begin{array}{c}
i \\
1
\end{array}\right]
$$

Example. For A an $n \times n$ nonsymmetric matrix, there may not be n independent eigenvectors. Let

$$
A=\left[\begin{array}{ccc}
a & 1 & 0 \\
0 & a & 1 \\
0 & 0 & a
\end{array}\right]
$$

where a is a constant.

Then $\lambda=a$ is the eigenvalue of A with multiplicity 3, and any associated eigenvector must be of the form

$$
v=c[1,0,0]^{T}
$$

for some $c \neq 0$.

Thus, up to a nonzero multiplicative constant, we have only one eigenvector,

$$
v=[1,0,0]^{T}
$$

for the three equal eigenvalues $\lambda_{1}=\lambda_{2}=\lambda_{3}=a$.

THE POWER METHOD

This numerical method is used primarily to find the eigenvalue of largest magnitude, if such exists.

We assume that the eigenvalues $\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ of an $n \times n$ matrix A satisfy

$$
\begin{equation*}
\left|\lambda_{1}\right|>\left|\lambda_{2}\right| \geq \cdots \geq\left|\lambda_{n}\right| \tag{10}
\end{equation*}
$$

Denote the eigenvector for λ_{1} by $v^{(1)}$. We define an iteration method for computing improved estimates of λ_{1} and $v^{(1)}$.

Choose $z^{(0)} \approx v^{(1)}$, usually chosen randomly. Define

$$
w^{(1)}=A z^{(0)}
$$

Let α_{1} be the maximum component of $w^{(1)}$, in size. If there is more than one such component, choose the first such component as α_{1}. Then define

$$
z^{(1)}=\frac{1}{\alpha_{1}} w^{(1)}
$$

Repeat the process iteratively. Define

$$
\begin{equation*}
w^{(m)}=A z^{(m-1)} \tag{11}
\end{equation*}
$$

Let α_{m} be the maximum component of $w^{(m)}$, in size. Define

$$
\begin{equation*}
z^{(m)}=\frac{1}{\alpha_{m}} w^{(m)} \tag{12}
\end{equation*}
$$

for $m=1,2, \ldots$ Then, roughly speaking, the vectors $z^{(m)}$ will converge to some multiple of $v^{(1)}$.

To find λ_{1} by this process, also pick some nonzero component of the vectors $z^{(m)}$ and $w^{(m)}$, say component k; and fix k. Often this is picked as the maximal component of $z^{(l)}$, for some large l. Define

$$
\begin{equation*}
\lambda_{1}^{(m)}=\frac{w_{k}^{(m)}}{z_{k}^{(m-1)}}, \quad m=1,2, \ldots \tag{13}
\end{equation*}
$$

where $z_{k}^{(m-1)}$ denotes component k of $z^{(m-1)}$.

It can be shown that $\lambda_{1}^{(m)}$ converges to λ_{1} as $m \rightarrow \infty$.

Example. Recall the earlier example $A=\left[\begin{array}{ll}1.25 & 0.75 \\ 0.75 & 1.25\end{array}\right]$. Double precision was used in the computation, with rounded values shown in the table given here.

Table 1: Power method example

m	$z_{1}^{(m)}$	$z_{2}^{(m)}$	$\lambda_{1}^{(m)}$	$\lambda_{1}^{(m)}-\lambda_{1}^{(m-1)}$	Ratio
0	1.0	.5			
1	1.0	.84615	1.62500		
2	1.0	.95918	1.88462	$2.60 E-1$	
3	1.0	.98964	1.96939	$8.48 E-2$	0.33
4	1.0	.99740	1.99223	$2.28 E-2$	0.27
5	1.0	.99935	1.99805	$5.82 E-3$	0.26
6	1.0	.99984	1.99951	$1.46 E-3$	0.25
7	1.0	.99996	1.99988	$3.66 E-4$	0.25

Note that in this example, $\lambda_{1}=2$ and $v^{(1)}=[1,1]^{T}$, and the numerical results are converging to these values.
The column of successive differences $\lambda_{1}^{(m)}-\lambda_{1}^{(m-1)}$ and their successive ratios are included to show that there is a regular pattern to the convergence.

CONVERGENCE

Assume A is a real $n \times n$ matrix.

It can be shown, by induction, that

$$
\begin{equation*}
z^{(m)}=\sigma_{m} \cdot \frac{A^{m} z^{(0)}}{\left\|A^{m} z^{(0)}\right\|}, \quad m \geq 1 \tag{14}
\end{equation*}
$$

where $\sigma_{m}= \pm 1$.

Further assume that the eigenvalues $\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ satisfy (10), and also that there are n corresponding eigenvectors $\left\{v^{(1)}, \ldots, v^{(n)}\right\}$ that form a basis for \mathbb{R}^{n}.

Thus

$$
\begin{equation*}
z^{(0)}=c_{1} v^{(1)}+\cdots+c_{n} v^{(n)} \tag{15}
\end{equation*}
$$

for some choice of constants $\left\{c_{1}, \ldots, c_{n}\right\}$.

Assume $c_{1} \neq 0$, something that a truly random choice of $z^{(0)}$ will usually guarantee.

Apply A to $z^{(0)}$ in (15), to get

$$
\begin{aligned}
A z^{(0)} & =c_{1} A v^{(1)}+\cdots+c_{n} A v^{(n)} \\
& =\lambda_{1} c_{1} v^{(1)}+\cdots+\lambda_{n} c_{n} v^{(n)}
\end{aligned}
$$

Apply A repeatedly to get

$$
\begin{aligned}
& A^{m} z^{(0)}=\lambda_{1}^{m} c_{1} v^{(1)}+\cdots+\lambda_{n}^{m} c_{n} v^{(n)} \\
& =\lambda_{1}^{m}\left[c_{1} v^{(1)}+\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{m} c_{2} v^{(2)}+\cdots+\left(\frac{\lambda_{n}}{\lambda_{1}}\right)^{m} c_{n} v^{(n)}\right]
\end{aligned}
$$

From (14),

$$
\begin{aligned}
z^{(m)} & =\sigma_{m}\left(\frac{\lambda_{1}}{\left|\lambda_{1}\right|}\right)^{m} \times \\
& \frac{c_{1} v^{(1)}+\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{m} c_{2} v^{(2)}+\cdots+\left(\frac{\lambda_{n}}{\lambda_{1}}\right)^{m} c_{n} v^{(n)}}{\left\|c_{1} v^{(1)}+\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{m} c_{2} v^{(2)}+\cdots+\left(\frac{\lambda_{n}}{\lambda_{1}}\right)^{m} c_{n} v^{(n)}\right\|}
\end{aligned}
$$

(16)

As $m \rightarrow \infty$, the terms $\left(\lambda_{j} / \lambda_{1}\right)^{m} \rightarrow 0$, for $2 \leq j \leq n$, with $\left(\lambda_{2} / \lambda_{1}\right)^{m}$ the largest. Also,

$$
\sigma_{m}\left(\frac{\lambda_{1}}{\left|\lambda_{1}\right|}\right)^{m}= \pm 1
$$

Thus as $m \rightarrow \infty$, most terms in (16) are converging to zero. Cancel c_{1} from numerator and denominator, obtaining

$$
z^{(m)} \approx \hat{\sigma}_{m} \frac{v^{(1)}}{\left\|v^{(1)}\right\|}
$$

where $\hat{\sigma}_{m}= \pm 1$.
If the normalization of $z^{(m)}$ is modified, to always have some particular component be positive, then

$$
\begin{equation*}
z^{(m)} \rightarrow \pm \frac{v^{(1)}}{\left\|v^{(1)}\right\|} \equiv \hat{v}^{(1)} \tag{17}
\end{equation*}
$$

with a fixed sign independent of m. Our earlier normalization of sign, dividing by α_{m}, will usually accomplish this, but not always.

The error in $z^{(m)}$ will satisfy

$$
\begin{equation*}
\left\|z^{(m)}-\hat{v}^{(1)}\right\| \leq c\left|\frac{\lambda_{2}}{\lambda_{1}}\right|^{m}, \quad m \geq 0 \tag{18}
\end{equation*}
$$

for some constant $c>0$.

CONVERGENCE OF $\lambda_{1}^{(m)}$

A similar convergence analysis can be given for $\left\{\lambda_{1}^{(m)}\right\}$, with the same kind of error bound.

Moreover, if we also assume

$$
\begin{equation*}
\left|\lambda_{1}\right|>\left|\lambda_{2}\right|>\left|\lambda_{3}\right| \geq\left|\lambda_{4}\right| \geq \cdots \geq\left|\lambda_{n}\right| \geq 0 \tag{19}
\end{equation*}
$$

then

$$
\begin{equation*}
\lambda_{1}-\lambda_{1}^{(m)} \approx c\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{m} \tag{20}
\end{equation*}
$$

for some constant c, as $m \rightarrow \infty$.

The error decreases geometrically with a ratio of $\lambda_{2} / \lambda_{1}$. In the earlier example with $A=\left[\begin{array}{ll}1.25 & 0.75 \\ 0.75 & 1.25\end{array}\right]$,

$$
\lambda_{2} / \lambda_{1}=0.5 / 2=.25
$$

which is the ratio observed in Table 1.

Example. Consider the symmetric matrix

$$
A=\left[\begin{array}{rrr}
-7 & 13 & -16 \\
13 & -10 & 13 \\
-16 & 13 & -7
\end{array}\right]
$$

From earlier, the eigenvalues are

$$
\lambda_{1}=-36, \quad \lambda_{2}=9, \quad \lambda_{3}=3
$$

The eigenvector $v^{(1)}$ associated with λ_{1} is

$$
v^{(1)}=[1,-1,1]^{T}
$$

The results of using the power method are shown in the following Table 2.

Note that the ratios of the successive differences of $\lambda_{1}^{(m)}$ are approaching

$$
\frac{\lambda_{2}}{\lambda_{1}}=-0.25
$$

Also note that location of the maximal component of $z^{(m)}$ changes from one iteration to the next.

The initial guess $z^{(0)}$ was chosen closer to $v^{(1)}$ than would be usual in actual practice. It was so chosen for purposes of illustration.

Table 2: Power method example

m	$z_{1}^{(m)}$	$z_{2}^{(m)}$	$z_{3}^{(m)}$
0	1.000000	-0.800000	0.900000
1	-0.972477	1.000000	-1.000000
2	1.000000	-0.995388	0.993082
3	0.998265	-0.999229	1.000000
4	1.000000	-0.999775	0.999566
5	0.999891	-0.999946	1.000000
6	1.000000	-0.999986	0.999973
7	0.999993	-0.999997	1.000000
m	$\lambda_{1}^{(m)}$	$\lambda_{1}^{(m)}-\lambda_{1}^{(m-1)}$	Ratio
1	-31.80000		
2	-36.82075	$-5.03 E+0$	
3	-35.82936	$9.91 E-1$	-0.197
4	-36.04035	$-2.11 E-1$	-0.213
5	-35.99013	$5.02 E-2$	-0.238
6	-36.00245	$-1.23 E-2$	-0.245
7	-35.99939	$3.06 E-3$	-0.249

AITKEN EXTRAPOLATION

From (20),

$$
\begin{equation*}
\lambda_{1}-\lambda_{1}^{(m+1)} \approx r\left(\lambda_{1}-\lambda_{1}^{(m)}\right), \quad r=\lambda_{2} / \lambda_{1} \tag{21}
\end{equation*}
$$

for large m. Choose r using

$$
\begin{equation*}
r \approx \frac{\lambda_{1}^{(m+1)}-\lambda_{1}^{(m)}}{\lambda_{1}^{(m)}-\lambda_{1}^{(m-1)}} \tag{22}
\end{equation*}
$$

as with Aitken extrapolation in § 3.4 on linear iteration methods.

Using this r, solve for λ_{1} in (21),

$$
\begin{align*}
& \lambda_{1} \approx \frac{1}{1-r}\left[\lambda_{1}^{(m+1)}-r \lambda_{1}^{(m)}\right] \tag{23}\\
= & \lambda_{1}^{(m+1)}+\frac{r}{1-r}\left[\lambda_{1}^{(m+1)}-\lambda_{1}^{(m)}\right]
\end{align*}
$$

This is Aitken's extrapolation formula. It also gives us the Aitken error estimate

$$
\begin{equation*}
\lambda_{1}-\lambda_{1}^{(m+1)} \approx \frac{r}{1-r}\left[\lambda_{1}^{(m+1)}-\lambda_{1}^{(m)}\right] \tag{24}
\end{equation*}
$$

Example. In Table 2, take $m+1=7$. Then (24) yields

$$
\begin{aligned}
& \lambda_{1}-\lambda_{1}^{(7)} \approx \frac{r}{1-r}\left[\lambda_{1}^{(7)}-\lambda_{1}^{(6)}\right] \\
= & \frac{-0.249}{1+0.249}[0.00306] \doteq-0.00061
\end{aligned}
$$

which is the actual error.

Also the Aitken formula (23) will give the exact answer for λ_{1}, to seven significant digits.

