THE EIGENVALUE PROBLEM

Let A be an $n \times n$ square matrix. If there is a number λ and a column vector $v \neq 0$ for which

$$Av = \lambda v$$

then we say λ is an *eigenvalue* of A and v is an associated *eigenvector*. Note that if v is an eigenvector, then any nonzero multiple of v is also an eigenvector for the same eigenvalue λ .

Example: Let

$$A = \begin{bmatrix} 1.25 & 0.75 \\ 0.75 & 1.25 \end{bmatrix}$$
(1)

The eigenvalue-eigenvector pairs for A are

$$\lambda_{1} = 2, \qquad v^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\lambda_{2} = 0.5, \qquad v^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$
(2)

Eigenvalues and eigenvectors are often used to give additional intuition to the function

$$F(x) = Ax, \qquad x \in \mathbb{R}^n \text{ or } \mathbb{C}^n$$

Example. The eigenvectors in the preceding example (2) form a *basis* for \mathbb{R}^2 . For $x = [x_1, x_2]^T$,

$$\begin{array}{rcrcr} x & = & c_1 v^{(1)} + c_2 v^{(2)} \\ c_1 & = & \frac{x_1 + x_2}{2}, \quad c_2 = \frac{x_2 - x_1}{2} \end{array}$$

Using (2), the function

$$F(x) = Ax, \qquad x \in \mathbb{R}^2$$

can be written as

$$F(x) = c_1 A v^{(1)} + c_2 A v^{(2)}$$

= $2c_1 v^{(1)} + \frac{1}{2}c_2 v^{(2)}, \quad x \in \mathbb{R}^2$

The eigenvectors provide a better way to understand the meaning of F(x) = Ax.

See the following Figure 1 and Figure 2.

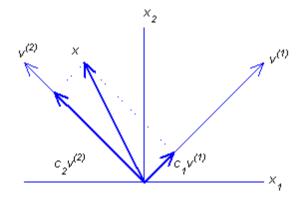


Figure 1: Decomposition of x

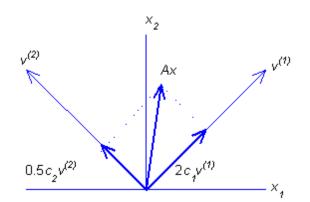


Figure 2: Decomposition of $\boldsymbol{A}\boldsymbol{x}$

How to calculate λ and v? Rewrite $Av = \lambda v$ as

$$(\lambda I - A)v = 0, \qquad v \neq 0$$
 (3)

a homogeneous system of linear equations with the coefficient matrix $\lambda I - A$ and the nonzero solution v. This can be true if and only if

$$f(\lambda) \equiv \det(\lambda I - A) = 0$$

The function $f(\lambda)$ is called the *characteristic polynomial* of A, and its roots are the eigenvalues of A. Assuming A has order n,

$$f(\lambda) = \lambda^n + \alpha_{n-1}\lambda^{n-1} + \dots + \alpha_1\lambda + \alpha_0 \qquad (4)$$

For the case n = 2,

$$f(\lambda) = \det \begin{bmatrix} \lambda - a_{11} & -a_{12} \\ -a_{21} & \lambda - a_{22} \end{bmatrix}$$

= $(\lambda - a_{11})(\lambda - a_{22}) - a_{21}a_{12}$
= $\lambda^2 - (a_{11} + a_{22})\lambda + a_{11}a_{22} - a_{21}a_{12}$

The formula (4) shows that a matrix A of order n can have at most n distinct eigenvalues.

Example. Let

$$A = \begin{bmatrix} -7 & 13 & -16 \\ 13 & -10 & 13 \\ -16 & 13 & -7 \end{bmatrix}$$
(5)

Then

$$f(\lambda) = \det egin{bmatrix} \lambda + 7 & -13 & 16 \ -13 & \lambda + 10 & -13 \ 16 & -13 & \lambda + 7 \end{bmatrix} \ = \lambda^3 + 24\lambda^2 - 405\lambda + 972$$

is the characteristic polynomial of A.

The roots are

$$\lambda_1 = -36, \qquad \lambda_2 = 9, \qquad \lambda_3 = 3$$
 (6)

Finding an eigenvector. For $\lambda = -36$, find an associated eigenvector v by solving $(\lambda I - A)v = 0$, which becomes

$$(-36I - A)v = 0$$

$$\begin{pmatrix} -29 & -13 & 16 \\ -13 & -26 & -13 \\ 16 & -13 & -29 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

If $v_1 = 0$, then the only solution is v = 0. Thus $v_1 \neq 0$, and we arbitrarily choose $v_1 = 1$. This leads to the system

$$-13v_2 + 16v_3 = 29$$

 $-26v_2 - 13v_3 = 13$
 $-13v_2 - 29v_3 = -16$

The solution is $v_2 = -1$, $v_3 = 1$. Thus the eigenvector v for $\lambda = -36$ is

$$v^{(1)} = [1, -1, 1]^T$$
 (7)

or any nonzero multiple of this vector.

SYMMETRIC MATRICES

Recall that A symmetric means $A^{\mathsf{T}} = A$, assuming that A contains only real number entries. Such matrices are very common in applications.

Example. A general 3×3 symmetric matrix looks like

$$A = \left[\begin{array}{rrrr} a & b & c \\ b & d & e \\ c & e & f \end{array} \right]$$

A general $n \times n$ matrix $\bar{A} = \begin{bmatrix} a_{i,j} \end{bmatrix}$ is symmetric if and only if

$$a_{i,j} = a_{j,i}, \qquad 1 \le i, j \le n$$

Following is a very important set of results for symmetric matrices, explaining much of their special character.

THEOREM. Let A be a real, symmetric, $n \times n$ matrix. Then there is a set of n eigenvalue-eigenvector pairs $\{\lambda_i, v^{(i)}\}, 1 \leq i \leq n$ that satisfy the following properties.

- (i) The numbers $\lambda_1, \lambda_2, \ldots, \lambda_n$ are all of the roots of the characteristic polynomial $f(\lambda)$ of A, repeated according to their multiplicity. Moreover, all the λ_i are real numbers.
- (ii) If the column matrices $v^{(i)}$, $1 \le i \le n$ are regarded as vectors in *n*-dimensional space, then they are mutually perpendicular and of length 1:

 $v^{(i)\mathsf{T}}v^{(j)} = 0, \quad 1 \le i, j \le n, \quad i \ne j$ $v^{(i)\mathsf{T}}v^{(i)} = 1, \quad 1 \le i \le n$ (iii) For each column vector $x = [x_1, x_2, \dots, x_n]^T$, there is a unique choice of constants c_1, \dots, c_n for which

$$x = c_1 v^{(1)} + \dots + c_n v^{(n)}$$

The constants are given by

$$c_i = \sum_{j=1}^n x_j v_j^{(i)} = x^{\mathsf{T}} v^{(i)}, \qquad 1 \le i \le n$$

where $v^{(i)} = [v_1^{(i)}, \dots, v_n^{(i)}]^{\mathsf{T}}.$

(iv) Define the matrix U of order n by

$$U = [v^{(1)}, v^{(2)}, \dots, v^{(n)}]$$
(8)

Then

$$U^{\mathsf{T}}AU = D \equiv \begin{bmatrix} \lambda_1 & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{0} & \lambda_2 & \cdots & \vdots \\ \vdots & \ddots & \ddots & \mathbf{0} \\ \mathbf{0} & \cdots & \mathbf{0} & \lambda_n \end{bmatrix}$$

 $\quad \text{and} \quad$

$$UU^{\mathsf{T}} = U^{\mathsf{T}}U = I \tag{9}$$

 $A = UDU^{\mathsf{T}}$ is a useful decomposition of A.

Example. Recall

$$A = \left[\begin{array}{rrr} 1.25 & 0.75 \\ 0.75 & 1.25 \end{array} \right]$$

and its eigenvalue-eigenvector pairs

$$\lambda_1 = 2, \qquad v^{(1)} = \begin{bmatrix} 1\\ 1 \end{bmatrix}$$

 $\lambda_2 = 0.5, \qquad v^{(2)} = \begin{bmatrix} -1\\ 1 \end{bmatrix}$

Figure 1 illustrates that the eigenvectors are perpendicular. To have them be of length 1, replace the above by

$$\lambda_{1} = 2, \qquad v^{(1)} = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$$
$$\lambda_{2} = 0.5, \qquad v^{(2)} = \begin{bmatrix} \frac{-1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$$

that are multiples of the original $v^{(i)}$.

The matrix U of (8) is given by

$$U = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$$

Easily, $U^{\mathsf{T}}U = I$.

Also,

$$U^{\mathsf{T}}AU$$

$$= \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} 1.25 & 0.75 \\ 0.75 & 1.25 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 0 \\ 0 & 0.5 \end{bmatrix}$$
consolified in (0)

as specified in (9).

NONSYMMETRIC MATRICES

Nonsymmetric matrices have a wide variety of possible behaviour. We illustrate with two simple examples some of the possible behaviour.

Example. We illustrate the existence of complex eigenvalues. Let

$$A = \left[\begin{array}{rr} \mathbf{0} & \mathbf{1} \\ -\mathbf{1} & \mathbf{0} \end{array} \right]$$

The characteristic polynomial is

$$f(\lambda) = \mathsf{det} \left[egin{array}{cc} \lambda & -1 \ 1 & \lambda \end{array}
ight] = \lambda^2 + 1$$

The roots of $f(\lambda)$ are complex,

$$\lambda_1 = i \equiv \sqrt{-1}, \qquad \lambda_2 = -i$$

and corresponding eigenvectors are

$$v^{(1)} = \begin{bmatrix} i \\ -1 \end{bmatrix}, \quad v^{(2)} = \begin{bmatrix} i \\ 1 \end{bmatrix}$$

Example. For A an $n \times n$ nonsymmetric matrix, there may not be n independent eigenvectors. Let

$$A = \left[\begin{array}{rrrr} a & \mathbf{1} & \mathbf{0} \\ \mathbf{0} & a & \mathbf{1} \\ \mathbf{0} & \mathbf{0} & a \end{array} \right]$$

where a is a constant.

Then $\lambda = a$ is the eigenvalue of A with multiplicity 3, and any associated eigenvector must be of the form

$$v = c [1, 0, 0]^T$$

for some $c \neq 0$.

Thus, up to a nonzero multiplicative constant, we have only one eigenvector,

$$v = [1, 0, 0]^T$$

for the three equal eigenvalues $\lambda_1 = \lambda_2 = \lambda_3 = a$.

THE POWER METHOD

This numerical method is used primarily to find the eigenvalue of largest magnitude, if such exists.

We assume that the eigenvalues $\{\lambda_1, \ldots, \lambda_n\}$ of an $n \times n$ matrix A satisfy

$$|\lambda_1| > |\lambda_2| \ge \cdots \ge |\lambda_n| \tag{10}$$

Denote the eigenvector for λ_1 by $v^{(1)}$. We define an iteration method for computing improved estimates of λ_1 and $v^{(1)}$.

Choose $z^{(0)} \approx v^{(1)}$, usually chosen randomly. Define

$$w^{(1)} = Az^{(0)}$$

Let α_1 be the maximum component of $w^{(1)}$, in size. If there is more than one such component, choose the first such component as α_1 . Then define

$$z^{(1)} = \frac{1}{\alpha_1} w^{(1)}$$

Repeat the process iteratively. Define

$$w^{(m)} = Az^{(m-1)} \tag{11}$$

Let α_m be the maximum component of $w^{(m)}$, in size. Define

$$z^{(m)} = \frac{1}{\alpha_m} w^{(m)} \tag{12}$$

for m = 1, 2, ... Then, roughly speaking, the vectors $z^{(m)}$ will converge to some multiple of $v^{(1)}$.

To find λ_1 by this process, also pick some nonzero component of the vectors $z^{(m)}$ and $w^{(m)}$, say component k; and fix k. Often this is picked as the maximal component of $z^{(l)}$, for some large l. Define

$$\lambda_1^{(m)} = \frac{w_k^{(m)}}{z_k^{(m-1)}}, \qquad m = 1, 2, \dots$$
(13)

where $z_k^{(m-1)}$ denotes component k of $z^{(m-1)}$.

It can be shown that $\lambda_1^{(m)}$ converges to λ_1 as $m \to \infty$.

Example. Recall the earlier example $A = \begin{bmatrix} 1.25 & 0.75 \\ 0.75 & 1.25 \end{bmatrix}$. Double precision was used in the computation, with rounded values shown in the table given here.

m	$z_{1}^{(m)}$	$z_{2}^{(m)}$	$\lambda_1^{(m)}$	$\lambda_1^{(m)} - \lambda_1^{(m-1)}$	Ratio
0	1.0	.5			
1	1.0	.84615	1.62500		
2	1.0	.95918	1.88462	2.60E - 1	
3	1.0	.98964	1.96939	8.48 <i>E</i> − 2	0.33
4	1.0	.99740	1.99223	2.28E - 2	0.27
5	1.0	.99935	1.99805	5.82E - 3	0.26
6	1.0	.99984	1.99951	1.46 <i>E</i> − 3	0.25
7	1.0	.99996	1.99988	3.66 <i>E</i> − 4	0.25

Table 1: Power method example

Note that in this example, $\lambda_1 = 2$ and $v^{(1)} = [1, 1]^T$, and the numerical results are converging to these values.

The column of successive differences $\lambda_1^{(m)} - \lambda_1^{(m-1)}$ and their successive ratios are included to show that there is a regular pattern to the convergence.

CONVERGENCE

Assume A is a real $n \times n$ matrix.

It can be shown, by induction, that

$$z^{(m)} = \sigma_m \cdot \frac{A^m z^{(0)}}{\|A^m z^{(0)}\|}, \qquad m \ge 1$$
 (14)

where $\sigma_m = \pm 1$.

Further assume that the eigenvalues $\{\lambda_1, \ldots, \lambda_n\}$ satisfy (10), and also that there are n corresponding eigenvectors $\{v^{(1)}, \ldots, v^{(n)}\}$ that form a basis for \mathbb{R}^n .

Thus

$$z^{(0)} = c_1 v^{(1)} + \dots + c_n v^{(n)}$$
(15)

for some choice of constants $\{c_1, \ldots, c_n\}$.

Assume $c_1 \neq 0$, something that a truly random choice of $z^{(0)}$ will usually guarantee.

Apply A to
$$z^{(0)}$$
 in (15), to get

$$Az^{(0)} = c_1 A v^{(1)} + \dots + c_n A v^{(n)}$$

$$= \lambda_1 c_1 v^{(1)} + \dots + \lambda_n c_n v^{(n)}$$

Apply \boldsymbol{A} repeatedly to get

$$A^{m}z^{(0)} = \lambda_{1}^{m}c_{1}v^{(1)} + \dots + \lambda_{n}^{m}c_{n}v^{(n)}$$
$$= \lambda_{1}^{m}\left[c_{1}v^{(1)} + \left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{m}c_{2}v^{(2)} + \dots + \left(\frac{\lambda_{n}}{\lambda_{1}}\right)^{m}c_{n}v^{(n)}\right]$$
From (14)

From (14),

$$z^{(m)} = \sigma_m \left(\frac{\lambda_1}{|\lambda_1|}\right)^m \times c_1 v^{(1)} + \left(\frac{\lambda_2}{\lambda_1}\right)^m c_2 v^{(2)} + \dots + \left(\frac{\lambda_n}{\lambda_1}\right)^m c_n v^{(n)}$$

$$\frac{\left\|c_1 v^{(1)} + \left(\frac{\lambda_2}{\lambda_1}\right)^m c_2 v^{(2)} + \dots + \left(\frac{\lambda_n}{\lambda_1}\right)^m c_n v^{(n)}\right\|}{(16)}$$

As $m o \infty$, the terms $(\lambda_j/\lambda_1)^m o$ 0, for 2 $\leq j \leq n$, with $(\lambda_2/\lambda_1)^m$ the largest. Also,

$$\sigma_m \left(\frac{\lambda_1}{|\lambda_1|}\right)^m = \pm 1$$

Thus as $m \to \infty$, most terms in (16) are converging to zero. Cancel c_1 from numerator and denominator, obtaining

$$z^{(m)} \approx \hat{\sigma}_m \frac{v^{(1)}}{\|v^{(1)}\|}$$

where $\hat{\sigma}_m = \pm 1$.

If the normalization of $z^{(m)}$ is modified, to always have some particular component be positive, then

$$z^{(m)} \to \pm \frac{v^{(1)}}{\|v^{(1)}\|} \equiv \hat{v}^{(1)}$$
 (17)

with a fixed sign independent of m. Our earlier normalization of sign, dividing by α_m , will usually accomplish this, but not always.

The error in $z^{(m)}$ will satisfy

$$\|z^{(m)} - \hat{v}^{(1)}\| \le c \left|\frac{\lambda_2}{\lambda_1}\right|^m, \qquad m \ge 0 \qquad (18)$$

for some constant c > 0.

CONVERGENCE OF $\lambda_1^{(m)}$

A similar convergence analysis can be given for $\left\{\lambda_1^{(m)}\right\}$, with the same kind of error bound.

Moreover, if we also assume

$$|\lambda_1| > |\lambda_2| > |\lambda_3| \ge |\lambda_4| \ge \cdots \ge |\lambda_n| \ge 0$$
 (19)

then

$$\lambda_1 - \lambda_1^{(m)} \approx c \left(\frac{\lambda_2}{\lambda_1}\right)^m$$
 (20)

for some constant c, as $m \to \infty.$

The error decreases geometrically with a ratio of λ_2/λ_1 . In the earlier example with $A = \begin{bmatrix} 1.25 & 0.75 \\ 0.75 & 1.25 \end{bmatrix}$,

$$\lambda_2/\lambda_1 = 0.5/2 = .25$$

which is the ratio observed in Table 1.

Example. Consider the symmetric matrix

$$A = \begin{bmatrix} -7 & 13 & -16 \\ 13 & -10 & 13 \\ -16 & 13 & -7 \end{bmatrix}$$

From earlier, the eigenvalues are

$$\lambda_1 = -36, \qquad \lambda_2 = 9, \qquad \lambda_3 = 3$$

The eigenvector $v^{(1)}$ associated with λ_1 is

$$v^{(1)} = [1, -1, 1]^T$$

The results of using the power method are shown in the following Table 2.

Note that the ratios of the successive differences of $\lambda_1^{(m)}$ are approaching

$$\frac{\lambda_2}{\lambda_1} = -0.25$$

Also note that location of the maximal component of $z^{(m)}$ changes from one iteration to the next.

The initial guess $z^{(0)}$ was chosen closer to $v^{(1)}$ than would be usual in actual practice. It was so chosen for purposes of illustration.

	~(<i>m</i>)	(<i>m</i>)	(<i>m</i>)
m	z_1 '	z_2	$z_3^{(11)}$
0	1.000000	-0.800000	0.900000
1	-0.972477	1.000000	-1.000000
2	1.000000	-0.995388	0.993082
3	0.998265	-0.999229	1.000000
4	1.000000	-0.999775	0.999566
5	0.999891	-0.999946	1.000000
6	1.000000	-0.999986	0.999973
7	0.999993	-0.999997	1.000000
\overline{m}	$\lambda_1^{(m)}$	$\lambda_1^{(m)} - \lambda_1^{(m-1)}$	Ratio
1	-31.80000		

Table 2: Power method example

m	$\lambda_1^{(m)}$	$\lambda_1^{(m)} - \lambda_1^{(m-1)}$	Ratio
1	-31.80000		
2	-36.82075	-5.03E + 0	
3	-35.82936	9.91E - 1	-0.197
4	-36.04035	-2.11E - 1	-0.213
5	-35.99013	5.02 <i>E</i> – 2	-0.238
6	-36.00245	-1.23E-2	-0.245
7	-35.99939	3.06 <i>E</i> − 3	-0.249

AITKEN EXTRAPOLATION

From (20),

$$\lambda_1 - \lambda_1^{(m+1)} \approx r(\lambda_1 - \lambda_1^{(m)}), \qquad r = \lambda_2/\lambda_1 \quad (21)$$

for large m. Choose r using

$$r \approx \frac{\lambda_1^{(m+1)} - \lambda_1^{(m)}}{\lambda_1^{(m)} - \lambda_1^{(m-1)}}$$
(22)

as with Aitken extrapolation in § 3.4 on linear iteration methods.

Using this r, solve for λ_1 in (21),

$$\lambda_{1} \approx \frac{1}{1-r} \left[\lambda_{1}^{(m+1)} - r\lambda_{1}^{(m)} \right]$$

= $\lambda_{1}^{(m+1)} + \frac{r}{1-r} \left[\lambda_{1}^{(m+1)} - \lambda_{1}^{(m)} \right]$ (23)

This is *Aitken's extrapolation formula*. It also gives us the *Aitken error estimate*

$$\lambda_1 - \lambda_1^{(m+1)} \approx \frac{r}{1-r} \left[\lambda_1^{(m+1)} - \lambda_1^{(m)} \right]$$
(24)

Example. In Table 2, take m + 1 = 7. Then (24) yields

$$\lambda_1 - \lambda_1^{(7)} \approx \frac{r}{1 - r} \left[\lambda_1^{(7)} - \lambda_1^{(6)} \right]$$
$$= \frac{-0.249}{1 + 0.249} [0.00306] \doteq -0.00061$$

which is the actual error.

Also the Aitken formula (23) will give the exact answer for λ_1 , to seven significant digits.