
ITERATION METHODS

These are methods which compute a sequence of pro-

gressively accurate iterates to approximate the solu-

tion of Ax = b.

We need such methods for solving many large lin-

ear systems. Sometimes the matrix is too large to

be stored in the computer memory, making a direct

method too difficult to use.

More importantly, the operations cost of 23n
3 for

Gaussian elimination is too large for most large sys-

tems. With iteration methods, the cost can often be

reduced to something of cost O
³
n2
´
or less. Even

when a special form for A can be used to reduce the

cost of elimination, iteration will often be faster.

There are other, more subtle, reasons, which we do

not discuss here.



JACOBI’S ITERATION METHOD

We begin with an example. Consider the linear system

9x1 + x2 + x3 = b1
2x1 + 10x2 + 3x3 = b2
3x1 + 4x2 + 11x3 = b3

In equation #k, solve for xk:

x1 = 1
9[b1 − x2 − x3]

x2 = 1
10[b2 − 2x1 − 3x3]

x3 = 1
11[b3 − 3x1 − 4x2]

Let x(0) =
·
x
(0)
1 , x

(0)
2 , x

(0)
3

¸T
be an initial guess to the

solution x. Then define

x
(k+1)
1 = 1

9

·
b1 − x

(k)
2 − x

(k)
3

¸
x
(k+1)
2 = 1

10

·
b2 − 2x(k)1 − 3x(k)3

¸
x
(k+1)
3 = 1

11

·
b3 − 3x(k)1 − 4x(k)2

¸
for k = 0, 1, 2, . . . . This is called the Jacobi iteration
method or the method of simultaneous replacements.



NUMERICAL EXAMPLE.

Let b = [10, 19, 0]T .

The solution is x = [1, 2, −1]T .
To measure the error, we use

Error = kx− x(k)k = max
i

¯̄̄̄
xi − x

(k)
i

¯̄̄̄

k x
(k)
1 x

(k)
2 x

(k)
3 Error Ratio

0 0 0 0 2.00E + 0
1 1.1111 1.9000 0 1.00E + 0 0.500

2 0.9000 1.6778 −0.9939 3.22E− 1 0.322

3 1.0351 2.0182 −0.8556 1.44E− 1 0.448

4 0.9819 1.9496 −1.0162 5.06E− 2 0.349

5 1.0074 2.0085 −0.9768 2.32E− 2 0.462

6 0.9965 1.9915 −1.0051 8.45E− 3 0.364

7 1.0015 2.0022 −0.9960 4.03E− 3 0.477

8 0.9993 1.9985 −1.0012 1.51E− 3 0.375

9 1.0003 2.0005 −0.9993 7.40E− 4 0.489

10 0.9999 1.9997 −1.0003 2.83E− 4 0.382
30 1.0000 2.0000 −1.0000 3.01E− 11 0.447

31 1.0000 2.0000 −1.0000 1.35E− 11 0.447



GAUSS-SEIDEL ITERATION METHOD

Again consider the linear system

9x1 + x2 + x3 = b1
2x1 + 10x2 + 3x3 = b2
3x1 + 4x2 + 11x3 = b3

and solve for xk in equation #k:

x1 = 1
9[b1 − x2 − x3]

x2 = 1
10[b2 − 2x1 − 3x3]

x3 = 1
11[b3 − 3x1 − 4x2]

Now immediately use every new iterate:

x
(k+1)
1 = 1

9

·
b1 − x

(k)
2 − x

(k)
3

¸
x
(k+1)
2 = 1

10

·
b2 − 2x(k+1)1 − 3x(k)3

¸
x
(k+1)
3 = 1

11

·
b3 − 3x(k+1)1 − 4x(k+1)2

¸
for k = 0, 1, 2, . . . . This is called the Gauss-Seidel

iteration method or the method of successive replace-

ments.



NUMERICAL EXAMPLE.

Let b = [10, 19, 0]T .

The solution is x = [1, 2, −1]T .
To measure the error, we use

Error = kx− x(k)k = max
i

¯̄̄̄
xi − x

(k)
i

¯̄̄̄

k x
(k)
1 x

(k)
2 x

(k)
3 Error Ratio

0 0 0 0 2.00E + 0

1 1.1111 1.6778 −0.9131 3.22E − 1 0.161

2 1.0262 1.9687 −0.9958 3.13E − 2 0.097

3 1.0030 1.9981 −1.0001 3.00E − 3 0.096

4 1.0002 2.0000 −1.0001 2.24E − 4 0.074

5 1.0000 2.0000 −1.0000 1.65E − 5 0.074

6 1.0000 2.0000 −1.0000 2.58E − 6 0.155

The values of Ratio do not approach a limiting value

with larger values of the iteration index k.



A GENERAL SCHEMA

Rewrite Ax = b as

Nx = b+ Px (1)

with A = N − P a splitting of A. Choose N to be

nonsingular. Usually we want Nz = f to be easily

solvable for arbitray f . The iteration method is

Nx(k+1) = b+ Px(k), k = 0, 1, 2, . . . , (2)

EXAMPLE. Let N be the diagonal of A, and let P =

N −A. The iteration method is the Jacobi method:

ai,ix
(k+1)
i = bi −

nX
j=1
j 6=i

ai,jx
(k)
j , 1 ≤ i ≤ n

for k = 0, 1, . . . .



EXAMPLE. Let N be the lower triangular part of A,

including its diagonal, and let P = N − A. The

iteration method is the Gauss-Seidel method:

iX
j=1

ai,jx
(k+1)
j = bi −

nX
j=i+1

ai,jx
(k)
j , 1 ≤ i ≤ n

for k = 0, 1, . . . .

EXAMPLE. Another method could be defined by let-

ting N be the tridiagonal matrix formed from the di-

agonal, super-diagonal, and sub-diagonal of A, with

P = N −A:

N =


a1,1 a1,2 0 · · · 0
a2,1 a2,2 a2,3

. . . ...
0 . . . 0
... . . . an−1,n−2 an−1,n−1 an−1,n
0 · · · 0 an,n−1 an,n


Solving Nx(k+1) = b + Px(k) uses the algorithm for

tridiagonal systems from §6.4.



CONVERGENCE

When does the iteration method (2) converge? Sub-

tract (2) from (1), obtaining

N
³
x− x(k+1)

´
= P

³
x− x(k)

´
x− x(k+1) = N−1P

³
x− x(k)

´
e(k+1) = Me(k), M = N−1P (3)

with e(k) ≡ x− x(k)

Return now to the matrix and vector norms of §6.5.
Then °°°e(k+1)°°° ≤ kMk

°°°e(k)°°° , k ≥ 0
Thus the error e(k) converges to zero if kMk < 1,

with °°°e(k)°°° ≤ kMkk
°°°e(0)°°° , k ≥ 0



EXAMPLE. For the earlier example with the Jacobi

method,

x
(k+1)
1 = 1

9

·
b1 − x

(k)
2 − x

(k)
3

¸
x
(k+1)
2 = 1

10

·
b2 − 2x(k)1 − 3x(k)3

¸
x
(k+1)
3 = 1

11

·
b3 − 3x(k)1 − 4x(k)2

¸

M =


0 −19 −19
− 2
10 0 − 3

10

− 3
11 − 4

11 0


kMk = 7

11

.
= 0.636

This is consistent with the earlier table of values, al-

though the actual convergence rate was better than

predicted by (3).



EXAMPLE. For the earlier example with the Gauss-

Seidel method,

x
(k+1)
1 = 1

9

·
b1 − x

(k)
2 − x

(k)
3

¸
x
(k+1)
2 = 1

10

·
b2 − 2x(k+1)1 − 3x(k)3

¸
x
(k+1)
3 = 1

11

·
b3 − 3x(k+1)1 − 4x(k+1)2

¸

M =

 9 0 0
2 10 0
3 4 11


−1  0 −1 −1

0 0 −3
0 0 0



=


0 −19 −19
0 1

45 − 5
18

0 1
45

13
99


kMk = 0.3

This too is consistent with the earlier numerical re-

sults.



DIAGONALLY DOMINANT MATRICES

Matrices A for which¯̄̄
ai,i

¯̄̄
>

nX
j=1
j 6=i

¯̄̄
ai,j

¯̄̄
, i = 1, . . . , n

are called diagonally dominant. For the Jacobi itera-

tion method,

M =



0 −a1,2
a1,1

· · · −a1,n
a1,1

−a2,1
a2,2

0 −a2,n
a2,2

... . . . ...

−an,1

an,n
· · · −an,n−1

an,n
0


With diagonally dominant matrices A,

kMk = max
1≤i≤n

nX
j=1
j 6=i

¯̄̄̄
¯ai,jai,i

¯̄̄̄
¯ < 1 (4)

Thus the Jacobi iteration method for solving Ax = b

is convergent.



GAUSS-SEIDEL ITERATION

Assuming A is diagonally dominant, we can show that

the Gauss-Seidel iteration will also converge. How-

ever, constructing M = N−1P is not reasonable for

this method and an alternative approach is needed.

Return to the error equation

Ne(k+1) = Pe(k)

and write it in component form for the Gauss-Seidel

method:

iX
j=1

ai,je
(k+1)
j = −

nX
j=i+1

ai,je
(k)
j , 1 ≤ i ≤ n

e
(k+1)
i = −

i−1X
j=1

ai,j

ai,i
e
(k+1)
j −

nX
j=i+1

ai,j

ai,i
e
(k)
j (5)



Introduce

αi =
i−1X
j=1

¯̄̄̄
¯ai,jai,i

¯̄̄̄
¯ , βi =

nX
j=i+1

¯̄̄̄
¯ai,jai,i

¯̄̄̄
¯ , 1 ≤ i ≤ n

with α1 = βn = 0. Taking bounds in (5),¯̄̄̄
e
(k+1)
i

¯̄̄̄
≤ αi

°°°e(k+1)°°°+βi

°°°e(k)°°° , i = 1, ..., n (6)

Let be an index for which¯̄̄̄
e
(k+1)

¯̄̄̄
= max
1≤i≤n

¯̄̄̄
e
(k+1)
i

¯̄̄̄
=
°°°e(k+1)°°°

Then using i = in (6),°°°e(k+1)°°° ≤ α
°°°e(k+1)°°°+ β

°°°e(k)°°°
°°°e(k+1)°°° ≤ β

1− α

°°°e(k)°°°
Define

η = max
i

βi
1− αi

Then °°°e(k+1)°°° ≤ η
°°°e(k)°°°



For A diagonally dominant, it can be shown that

η ≤ kMk (7)

where kMk is for the definition of M for the Jacobi

method, given earlier in (4) as

kMk = max
1≤i≤n

nX
j=1
j 6=i

¯̄̄̄
¯ai,jai,i

¯̄̄̄
¯ = max

1≤i≤n (αi + βi) < 1

Consequently, for A diagonally dominant, the Gauss-

Seidel method also converges and it does so more

rapidly than the Jacobi method in most cases.

Showing (7) follows by showing

βi
1− αi

− (αi + βi) ≥ 0, 1 ≤ i ≤ n

For our earlier example with A of order 3, we have

µ = 0.375 This is not as good as computing kMk
directly for the Gauss-Seidel method, but it does show

that the rate of convergence is better than for the

Jacobi method.



CONVERGENCE: AN ADDENDUM

Since

kMk = kN−1Pk ≤ kN−1k kPk,
kMk < 1 is satisfied if N satisfies

kN−1k kPk < 1

Using P = N −A, this can be rewritten as

kA−Nk < 1

kN−1k
We also want to choose N so that systems Nz = f
is ‘easily solvable’.

GENERAL CONVERGENCE THEOREM:

Nx(k+1) = b+ Px(k), k = 0, 1, 2, . . . ,

will converge, for all right sides b and all initial guesses
x(0), if and only if all eigenvalues λ of M = N−1P
satisfy

|λ| < 1

This is the basis of deriving other splittings A = N−P
that lead to convergent iteration methods.



RESIDUAL CORRECTION METHODS

N be an invertible approximation of the matrix A; let

x(0) ≈ x for the solution of Ax = b. Define

r(0) = b−Ax(0)

Since Ax = b for the true solution x,

r(0) = Ax−Ax(0)

= A(x− x(0)) = Ae(0)

with e(0) = x− x(0). Let ê(0) be the solution of

Nê(0) = r(0)

and then define

x(1) = x(0) + ê(0)

Repeat this process inductively.



RESIDUAL CORRECTION

For k = 0, 1, . . . , define

r(k) = b−Ax(k)

Nê(k) = r(k)

x(k+1) = x(k) + ê(k)

This is the general residual correction method.

To see how this fits into our earlier framework, proceed

as follows:

x(k+1) = x(k) + ê(k) = x(k) +N−1r(k)

= x(k) +N−1(b−Ax(k))

Thus,

Nx(k+1) = Nx(k) + b−Ax(k)

= b+ (N −A)x(k)

= b+ Px(k)

Sometimes the residual correction scheme is a prefer-

able way of approaching the development of an itera-

tive method.


