## ITERATION METHODS

These are methods which compute a sequence of progressively accurate iterates to approximate the solution of $A x=b$.

We need such methods for solving many large linear systems. Sometimes the matrix is too large to be stored in the computer memory, making a direct method too difficult to use.

More importantly, the operations cost of $\frac{2}{3} n^{3}$ for Gaussian elimination is too large for most large systems. With iteration methods, the cost can often be reduced to something of cost $O\left(n^{2}\right)$ or less. Even when a special form for $A$ can be used to reduce the cost of elimination, iteration will often be faster.

There are other, more subtle, reasons, which we do not discuss here.

## JACOBI'S ITERATION METHOD

We begin with an example. Consider the linear system

$$
\begin{aligned}
& 9 x_{1}+x_{2}+x_{3}=b_{1} \\
& 2 x_{1}+10 x_{2}+3 x_{3}=b_{2} \\
& 3 x_{1}+4 x_{2}+11 x_{3}=b_{3}
\end{aligned}
$$

In equation $\# k$, solve for $x_{k}$ :

$$
\begin{aligned}
& x_{1}=\frac{1}{9}\left[b_{1}-x_{2}-x_{3}\right] \\
& x_{2}=\frac{1}{10}\left[b_{2}-2 x_{1}-3 x_{3}\right] \\
& x_{3}=\frac{1}{11}\left[b_{3}-3 x_{1}-4 x_{2}\right]
\end{aligned}
$$

Let $x^{(0)}=\left[x_{1}^{(0)}, x_{2}^{(0)}, x_{3}^{(0)}\right]^{T}$ be an initial guess to the solution $x$. Then define

$$
\begin{aligned}
x_{1}^{(k+1)} & =\frac{1}{9}\left[b_{1}-x_{2}^{(k)}-x_{3}^{(k)}\right] \\
x_{2}^{(k+1)} & =\frac{1}{10}\left[b_{2}-2 x_{1}^{(k)}-3 x_{3}^{(k)}\right] \\
x_{3}^{(k+1)} & =\frac{1}{11}\left[b_{3}-3 x_{1}^{(k)}-4 x_{2}^{(k)}\right]
\end{aligned}
$$

for $k=0,1,2, \ldots$. This is called the Jacobi iteration method or the method of simultaneous replacements.

## NUMERICAL EXAMPLE.

Let $b=[10,19,0]^{T}$.
The solution is $x=[1,2,-1]^{T}$.
To measure the error, we use

$$
\text { Error }=\left\|x-x^{(k)}\right\|=\max _{i}\left|x_{i}-x_{i}^{(k)}\right|
$$

| $k$ | $x_{1}^{(k)}$ | $x_{2}^{(k)}$ | $x_{3}^{(k)}$ | Error | Ratio |
| ---: | :--- | :--- | :--- | :--- | :---: |
| 0 | 0 | 0 | 0 | $2.00 \mathrm{E}+0$ |  |
| 1 | 1.1111 | 1.9000 | 0 | $1.00 \mathrm{E}+0$ | 0.500 |
| 2 | 0.9000 | 1.6778 | -0.9939 | $3.22 \mathrm{E}-1$ | 0.322 |
| 3 | 1.0351 | 2.0182 | -0.8556 | $1.44 \mathrm{E}-1$ | 0.448 |
| 4 | 0.9819 | 1.9496 | -1.0162 | $5.06 \mathrm{E}-2$ | 0.349 |
| 5 | 1.0074 | 2.0085 | -0.9768 | $2.32 \mathrm{E}-2$ | 0.462 |
| 6 | 0.9965 | 1.9915 | -1.0051 | $8.45 \mathrm{E}-3$ | 0.364 |
| 7 | 1.0015 | 2.0022 | -0.9960 | $4.03 \mathrm{E}-3$ | 0.477 |
| 8 | 0.9993 | 1.9985 | -1.0012 | $1.51 \mathrm{E}-3$ | 0.375 |
| 9 | 1.0003 | 2.0005 | -0.9993 | $7.40 \mathrm{E}-4$ | 0.489 |
| 10 | 0.9999 | 1.9997 | -1.0003 | $2.83 \mathrm{E}-4$ | 0.382 |
| 30 | 1.0000 | 2.0000 | -1.0000 | $3.01 \mathrm{E}-11$ | 0.447 |
| 31 | 1.0000 | 2.0000 | -1.0000 | $1.35 \mathrm{E}-11$ | 0.447 |

## GAUSS-SEIDEL ITERATION METHOD

Again consider the linear system

$$
\begin{aligned}
& 9 x_{1}+x_{2}+x_{3}=b_{1} \\
& 2 x_{1}+10 x_{2}+3 x_{3}=b_{2} \\
& 3 x_{1}+4 x_{2}+11 x_{3}=b_{3}
\end{aligned}
$$

and solve for $x_{k}$ in equation $\# k$ :

$$
\begin{aligned}
& x_{1}=\frac{1}{9}\left[b_{1}-x_{2}-x_{3}\right] \\
& x_{2}=\frac{1}{10}\left[b_{2}-2 x_{1}-3 x_{3}\right] \\
& x_{3}=\frac{1}{11}\left[b_{3}-3 x_{1}-4 x_{2}\right]
\end{aligned}
$$

Now immediately use every new iterate:

$$
\begin{aligned}
x_{1}^{(k+1)} & =\frac{1}{9}\left[b_{1}-x_{2}^{(k)}-x_{3}^{(k)}\right] \\
x_{2}^{(k+1)} & =\frac{1}{10}\left[b_{2}-2 x_{1}^{(k+1)}-3 x_{3}^{(k)}\right] \\
x_{3}^{(k+1)} & =\frac{1}{11}\left[b_{3}-3 x_{1}^{(k+1)}-4 x_{2}^{(k+1)}\right]
\end{aligned}
$$

for $k=0,1,2, \ldots$ This is called the Gauss-Seidel iteration method or the method of successive replacements.

## NUMERICAL EXAMPLE.

Let $b=[10,19,0]^{T}$.
The solution is $x=[1,2,-1]^{T}$.
To measure the error, we use

$$
\text { Error }=\left\|x-x^{(k)}\right\|=\max _{i}\left|x_{i}-x_{i}^{(k)}\right|
$$

| $k$ | $x_{1}^{(k)}$ | $x_{2}^{(k)}$ | $x_{3}^{(k)}$ | Error | Ratio |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | $2.00 E+0$ |  |
| 1 | 1.1111 | 1.6778 | -0.9131 | $3.22 E-1$ | 0.161 |
| 2 | 1.0262 | 1.9687 | -0.9958 | $3.13 E-2$ | 0.097 |
| 3 | 1.0030 | 1.9981 | -1.0001 | $3.00 E-3$ | 0.096 |
| 4 | 1.0002 | 2.0000 | -1.0001 | $2.24 E-4$ | 0.074 |
| 5 | 1.0000 | 2.0000 | -1.0000 | $1.65 E-5$ | 0.074 |
| 6 | 1.0000 | 2.0000 | -1.0000 | $2.58 E-6$ | 0.155 |

The values of Ratio do not approach a limiting value with larger values of the iteration index $k$.

## A GENERAL SCHEMA

Rewrite $A x=b$ as

$$
\begin{equation*}
N x=b+P x \tag{1}
\end{equation*}
$$

with $A=N-P$ a splitting of $A$. Choose $N$ to be nonsingular. Usually we want $N z=f$ to be easily solvable for arbitray $f$. The iteration method is

$$
\begin{equation*}
N x^{(k+1)}=b+P x^{(k)}, \quad k=0,1,2, \ldots \tag{2}
\end{equation*}
$$

EXAMPLE. Let $N$ be the diagonal of $A$, and let $P=$ $N-A$. The iteration method is the Jacobi method:

$$
a_{i, i} x_{i}^{(k+1)}=b_{i}-\sum_{\substack{j=1 \\ j \neq i}}^{n} a_{i, j} x_{j}^{(k)}, \quad 1 \leq i \leq n
$$

for $k=0,1, \ldots$

EXAMPLE. Let $N$ be the lower triangular part of $A$, including its diagonal, and let $P=N-A$. The iteration method is the Gauss-Seidel method:

$$
\sum_{j=1}^{i} a_{i, j} x_{j}^{(k+1)}=b_{i}-\sum_{j=i+1}^{n} a_{i, j} x_{j}^{(k)}, \quad 1 \leq i \leq n
$$

for $k=0,1, \ldots$

EXAMPLE. Another method could be defined by letting $N$ be the tridiagonal matrix formed from the diagonal, super-diagonal, and sub-diagonal of $A$, with $P=N-A$ :

$$
N=\left[\begin{array}{ccccc}
a_{1,1} & a_{1,2} & 0 & \cdots & 0 \\
a_{2,1} & a_{2,2} & a_{2,3} & \ddots & \vdots \\
0 & & \ddots & & 0 \\
\vdots & \ddots & a_{n-1, n-2} & a_{n-1, n-1} & a_{n-1, n} \\
0 & \cdots & 0 & a_{n, n-1} & a_{n, n}
\end{array}\right]
$$

Solving $N x^{(k+1)}=b+P x^{(k)}$ uses the algorithm for tridiagonal systems from $\S 6.4$.

## CONVERGENCE

When does the iteration method (2) converge? Subtract (2) from (1), obtaining

$$
\begin{align*}
N\left(x-x^{(k+1)}\right) & =P\left(x-x^{(k)}\right) \\
x-x^{(k+1)} & =N^{-1} P\left(x-x^{(k)}\right) \\
e^{(k+1)} & =M e^{(k)}, \quad M=N^{-1} P \tag{3}
\end{align*}
$$

with $e^{(k)} \equiv x-x^{(k)}$
Return now to the matrix and vector norms of $\S 6.5$.
Then

$$
\left\|e^{(k+1)}\right\| \leq\|M\|\left\|e^{(k)}\right\|, \quad k \geq 0
$$

Thus the error $e^{(k)}$ converges to zero if $\|M\|<1$, with

$$
\left\|e^{(k)}\right\| \leq\|M\|^{k}\left\|e^{(0)}\right\|, \quad k \geq 0
$$

EXAMPLE. For the earlier example with the Jacobi method,

$$
\begin{aligned}
x_{1}^{(k+1)} & =\frac{1}{9}\left[b_{1}-x_{2}^{(k)}-x_{3}^{(k)}\right] \\
x_{2}^{(k+1)} & =\frac{1}{10}\left[b_{2}-2 x_{1}^{(k)}-3 x_{3}^{(k)}\right] \\
x_{3}^{(k+1)} & =\frac{1}{11}\left[b_{3}-3 x_{1}^{(k)}-4 x_{2}^{(k)}\right] \\
M & =\left[\begin{array}{ccc}
0 & -\frac{1}{9} & -\frac{1}{9} \\
-\frac{2}{10} & 0 & -\frac{3}{10} \\
-\frac{3}{11} & -\frac{4}{11} & 0
\end{array}\right] \\
\|M\| & =\frac{7}{11} \doteq 0.636
\end{aligned}
$$

This is consistent with the earlier table of values, although the actual convergence rate was better than predicted by (3).

EXAMPLE. For the earlier example with the GaussSeidel method,

$$
\begin{aligned}
x_{1}^{(k+1)} & =\frac{1}{9}\left[b_{1}-x_{2}^{(k)}-x_{3}^{(k)}\right] \\
x_{2}^{(k+1)} & =\frac{1}{10}\left[b_{2}-2 x_{1}^{(k+1)}-3 x_{3}^{(k)}\right] \\
x_{3}^{(k+1)} & =\frac{1}{11}\left[b_{3}-3 x_{1}^{(k+1)}-4 x_{2}^{(k+1)}\right] \\
M & =\left[\begin{array}{ccc}
9 & 0 & 0 \\
2 & 10 & 0 \\
3 & 4 & 11
\end{array}\right]^{-1}\left[\begin{array}{ccc}
0 & -1 & -1 \\
0 & 0 & -3 \\
0 & 0 & 0
\end{array}\right] \\
& =\left[\begin{array}{ccc}
0 & -\frac{1}{9} & -\frac{1}{9} \\
0 & \frac{1}{45} & -\frac{5}{18} \\
0 & \frac{1}{45} & \frac{13}{99}
\end{array}\right] \\
\|M\| & =0.3
\end{aligned}
$$

This too is consistent with the earlier numerical results.

## DIAGONALLY DOMINANT MATRICES

Matrices $A$ for which

$$
\left|a_{i, i}\right|>\sum_{\substack{j=1 \\ j \neq i}}^{n}\left|a_{i, j}\right|, \quad i=1, \ldots, n
$$

are called diagonally dominant. For the Jacobi iteration method,

$$
M=\left[\begin{array}{cccc}
0 & -\frac{a_{1,2}}{a_{1,1}} & \cdots & -\frac{a_{1, n}}{a_{1,1}} \\
-\frac{a_{2,1}}{a_{2,2}} & 0 & & -\frac{a_{2, n}}{a_{2,2}} \\
\vdots & & \ddots & \vdots \\
-\frac{a_{n, 1}}{a_{n, n}} & \cdots & -\frac{a_{n, n-1}}{a_{n, n}} & 0
\end{array}\right]
$$

With diagonally dominant matrices $A$,

$$
\begin{equation*}
\|M\|=\max _{1 \leq i \leq n} \sum_{\substack{j=1 \\ j \neq i}}^{n}\left|\frac{a_{i, j}}{a_{i, i}}\right|<1 \tag{4}
\end{equation*}
$$

Thus the Jacobi iteration method for solving $A x=b$ is convergent.

## GAUSS-SEIDEL ITERATION

Assuming $A$ is diagonally dominant, we can show that the Gauss-Seidel iteration will also converge. However, constructing $M=N^{-1} P$ is not reasonable for this method and an alternative approach is needed. Return to the error equation

$$
N e^{(k+1)}=P e^{(k)}
$$

and write it in component form for the Gauss-Seidel method:

$$
\begin{align*}
& \sum_{j=1}^{i} a_{i, j} e_{j}^{(k+1)}=-\sum_{j=i+1}^{n} a_{i, j} e_{j}^{(k)}, \quad 1 \leq i \leq n \\
& e_{i}^{(k+1)}=-\sum_{j=1}^{i-1} \frac{a_{i, j}}{a_{i, i}} e_{j}^{(k+1)}-\sum_{j=i+1}^{n} \frac{a_{i, j}}{a_{i, i}} e_{j}^{(k)} \tag{5}
\end{align*}
$$

Introduce

$$
\alpha_{i}=\sum_{j=1}^{i-1}\left|\frac{a_{i, j}}{a_{i, i}}\right|, \quad \beta_{i}=\sum_{j=i+1}^{n}\left|\frac{a_{i, j}}{a_{i, i}}\right|, \quad 1 \leq i \leq n
$$

with $\alpha_{1}=\beta_{n}=0$. Taking bounds in (5),

$$
\begin{equation*}
\left|e_{i}^{(k+1)}\right| \leq \alpha_{i}\left\|e^{(k+1)}\right\|+\beta_{i}\left\|e^{(k)}\right\|, \quad i=1, \ldots, n \tag{6}
\end{equation*}
$$

Let $\ell$ be an index for which

$$
\left|e_{\ell}^{(k+1)}\right|=\max _{1 \leq i \leq n}\left|e_{i}^{(k+1)}\right|=\left\|e^{(k+1)}\right\|
$$

Then using $i=\ell$ in (6),

$$
\begin{gathered}
\left\|e^{(k+1)}\right\| \leq \alpha_{\ell}\left\|e^{(k+1)}\right\|+\beta_{\ell}\left\|e^{(k)}\right\| \\
\left\|e^{(k+1)}\right\| \leq \frac{\beta_{\ell}}{1-\alpha_{\ell}}\left\|e^{(k)}\right\|
\end{gathered}
$$

Define

$$
\eta=\max _{i} \frac{\beta_{i}}{1-\alpha_{i}}
$$

Then

$$
\left\|e^{(k+1)}\right\| \leq \eta\left\|e^{(k)}\right\|
$$

For $A$ diagonally dominant, it can be shown that

$$
\begin{equation*}
\eta \leq\|M\| \tag{7}
\end{equation*}
$$

where $\|M\|$ is for the definition of $M$ for the Jacobi method, given earlier in (4) as

$$
\|M\|=\max _{1 \leq i \leq n} \sum_{\substack{j=1 \\ j \neq i}}^{n}\left|\frac{a_{i, j}}{a_{i, i}}\right|=\max _{1 \leq i \leq n}\left(\alpha_{i}+\beta_{i}\right)<1
$$

Consequently, for $A$ diagonally dominant, the GaussSeidel method also converges and it does so more rapidly than the Jacobi method in most cases.

Showing (7) follows by showing

$$
\frac{\beta_{i}}{1-\alpha_{i}}-\left(\alpha_{i}+\beta_{i}\right) \geq 0, \quad 1 \leq i \leq n
$$

For our earlier example with $A$ of order 3, we have $\mu=0.375$ This is not as good as computing $\|M\|$ directly for the Gauss-Seidel method, but it does show that the rate of convergence is better than for the Jacobi method.

## CONVERGENCE: AN ADDENDUM

Since

$$
\|M\|=\left\|N^{-1} P\right\| \leq\left\|N^{-1}\right\|\|P\|
$$

$\|M\|<1$ is satisfied if $N$ satisfies

$$
\left\|N^{-1}\right\|\|P\|<1
$$

Using $P=N-A$, this can be rewritten as

$$
\|A-N\|<\frac{1}{\left\|N^{-1}\right\|}
$$

We also want to choose $N$ so that systems $N z=f$ is 'easily solvable'.

## GENERAL CONVERGENCE THEOREM:

$$
N x^{(k+1)}=b+P x^{(k)}, \quad k=0,1,2, \ldots
$$

will converge, for all right sides $b$ and all initial guesses $x^{(0)}$, if and only if all eigenvalues $\lambda$ of $M=N^{-1} P$ satisfy

$$
|\lambda|<1
$$

This is the basis of deriving other splittings $A=N-P$ that lead to convergent iteration methods.

## RESIDUAL CORRECTION METHODS

$N$ be an invertible approximation of the matrix $A$; let $x^{(0)} \approx x$ for the solution of $A x=b$. Define

$$
r^{(0)}=b-A x^{(0)}
$$

Since $A x=b$ for the true solution $x$,

$$
\begin{aligned}
r^{(0)} & =A x-A x^{(0)} \\
& =A\left(x-x^{(0)}\right)=A e^{(0)}
\end{aligned}
$$

with $e^{(0)}=x-x^{(0)}$. Let $\hat{e}^{(0)}$ be the solution of

$$
N \hat{e}^{(0)}=r^{(0)}
$$

and then define

$$
x^{(1)}=x^{(0)}+\hat{e}^{(0)}
$$

Repeat this process inductively.

## RESIDUAL CORRECTION

For $k=0,1, \ldots$, define

$$
\begin{aligned}
r^{(k)} & =b-A x^{(k)} \\
N \hat{e}^{(k)} & =r^{(k)} \\
x^{(k+1)} & =x^{(k)}+\hat{e}^{(k)}
\end{aligned}
$$

This is the general residual correction method.
To see how this fits into our earlier framework, proceed as follows:

$$
\begin{aligned}
x^{(k+1)} & =x^{(k)}+\hat{e}^{(k)}=x^{(k)}+N^{-1} r^{(k)} \\
& =x^{(k)}+N^{-1}\left(b-A x^{(k)}\right)
\end{aligned}
$$

Thus,

$$
\begin{aligned}
N x^{(k+1)} & =N x^{(k)}+b-A x^{(k)} \\
& =b+(N-A) x^{(k)} \\
& =b+P x^{(k)}
\end{aligned}
$$

Sometimes the residual correction scheme is a preferable way of approaching the development of an iterative method.

