
ESTIMATION OF ERROR

Let bx denote an approximate solution for Ax = b;

perhaps bx is obtained by Gaussian elimination. Let x
denote the exact solution. Then introduce

r = b−Abx
a quantity called the residual for bx. Then

r = b−Abx
= Ax−Abx
= A (x− bx)

x− bx = A−1r
or the error e = x− bx is the exact solution of

Ae = r

Thus we can solve this to obtain an estimate be of our
error e.



EXAMPLE. Recall the linear system

.729x1 + .81x2 + .9x3 = .6867
x1 + x2 + x3 = .8338

1.331x1 + 1.21x2 + 1.1x3 = 1.000

The true solution, rounded to four significant digits,

is

x = [.2245, .2814, .3279]T

Using Gaussian elimination without pivoting and four

digit decimal floating point arithmetic with rounding,

the resulting solution and error are

bx = [.2251, .2790, .3295]T
e = [−.0006, .0024,−.0016]T

Then

r = b−Abx = [.00006210, .0002000, .0003519]T
Solving Ae = r by Gaussian elimination, we obtain

e ≈ be = [−.0004471, .002150,−.001504]T



THE RESIDUAL CORRECTION METHOD

If in the above we had taken be and added it to bx, then
we would have obtained an improved answer:

x ≈ bx+ be = [.2247, .2811, .3280]T
Recall

x = [.2245, .2814, .3279]T

With the new approximation, we can repeat the earlier

process of estimating the error and then using it to

improve the answer. This iterative process is called

the residual correction method. It is illustrated with

another example on page 286 in the text.



ERROR ANALYSIS

Begin with a simple example. The system

7x + 10y = 1
5x + 7y = .7

has the solution

x = 0, y = .1

The perturbed system

7bx + 10by = 1.01
5bx + 7by = .69

has the solution

bx = −.17, by = .22

Why is there such a difference?



Consider the following Hilbert matrix example.

H3 =


1 1

2
1
3

1
2

1
3

1
4

1
3

1
4

1
5

 , fH3 =
 1.000 .5000 .3333
.5000 .3333 .2500
.3333 .2500 .2000



H−13 =

 9 −36 30
−36 192 −180
30 −180 180



fH−13 =

 9.062 −36.32 30.30
−36.32 193.7 −181.6
30.30 −181.6 181.5


We have changed H3 in the fifth decimal place (by

rounding the fractions to four decimal digits). But we

have ended with a change in H−13 in the third decimal

place.



VECTOR NORMS

A norm is a generalization of the absolute value func-

tion, and we use it to measure the “size” of a vector.

There are a variety of ways of defining the norm of

a vector, with each definition tied to certain applica-

tions.

Euclidean norm : Let x be a column vector with n

components. Define

kxk2 =
 nX
j=1

¯̄̄
xj
¯̄̄212

This is the standard definition of the length of a vec-

tor, giving us the “straight line” distance between

head and tail of the vector.



1-norm : Let x be a column vector with n compo-

nents. Define

kxk1 =
nX

j=1

¯̄̄
xj
¯̄̄

For planar applications (n = 2), this is sometimes

called the “taxi cab norm”, as it corresponds to dis-

tance as measured when driving in a city laid out with

a rectangular grid of streets.

∞-norm : Let x be a column vector with n compo-

nents. Define

kxk∞ = max
1≤j≤n

¯̄̄
xj
¯̄̄

This is also called the maximum norm and the Cheby-

shev norm. It is often used in numerical analysis where

we want to measure the maximum error component

in some vector quantity.



EXAMPLES

Let

x =
h
1 2 3

iT
Then

kxk1 = 6
kxk2 = sqrt(14)

.
= 3.74

kxk∞ = 3

PROPERTIES

Let k·k denote a generic norm. Then:

(a) kxk = 0 if and only if x = 0.
(b) kcxk = |c| kxk for any vector x and constant c.
(c) kx+ yk ≤ kxk+ kyk, for all vectors x and y.



MATRIX NORMS

We also need to measure the sizes of general matrices,

and we need to have some way of relating the sizes

of A and x to the size of Ax. In doing this, we will

consider only square matrices A.

We say a matrix norm is a way of defining the size

of a matrix, again satisfying the properties seen with

vector norms. Thus:

1. kAk = 0 if and only if A = 0.

2. kcAk = |c| kAk for any matrix A and constant c.

3. kA+Bk ≤ kAk+kBk, for all matrices A and B

of equal order.



In addition, we can multiply matrices, forming AB

from A and B. With absolute values, we have |ab| =
|a| |b| for all complex numbers a and b. There is no

way of generalizing exactly this relation to matrices A

and B. But we can obtain definitions for which

(d) kABk ≤ kAk kBk
Finally, if we are given some vector norm k·kv, we can
obtain an associated matrix norm definition for which

(e) kAxkv ≤ kAk kxkv
for all n× n matrices A and n× 1 vectors x.

Often we use as our definition of kAk the smallest
number for which this last inequality is satisfied for

all vectors x. In that case, we also obtain the useful

property

kIk = 1



Let the vector norm be k·k∞ for n×1 vectors x. Then
the associated matrix norm definition is

kAk = max
1≤i≤n

nX
j=1

¯̄̄
ai,j

¯̄̄
This is sometimes called the “row norm” of a matrix

A.

EXAMPLE. Let

A =

"
1 2
5 7

#
, z =

"
1
−1

#
, Az =

"
−1
−2

#
Then

kAk = 12, kzk∞ = 1, kAzk∞ = 2

and clearly kAzk∞ ≤ kAk kzk∞. Also let z =
h
1, 1

iT
.

Then

Az =

"
3
12

#
, kzk∞ = 1, kAzk∞ = 12

and kAzk∞ = kAk kzk∞.



Let the vector norm be k·k1. Then the associated

matrix norm definition is

kAk = max
1≤j≤n

nX
i=1

¯̄̄
ai,j

¯̄̄
This is sometimes called the “column norm” of the

matrix A.

Let the vector norm be k·k2. Then the associated

matrix norm definition is

kAk = sqrt
h
rσ(A

TA)
i

To understand this, let B denote an arbitrary square

matrix of order n× n. Then introduce

σ(B) = {λ an eigenvalue of B}

rσ(B) = max
λ∈σ(B)

|λ|

The set σ(B) is called the spectrum of B, and it

contains all the eigenvalues of B. The number rσ(B)

is called the “spectral radius” of B. There are easily

computable bounds for kAk, but the norm itself is

difficult to compute.



ERROR BOUNDS

Let Ax = b and Abx = bb, and we are interested in
cases with b ≈ bb. Then

kx− bxkv
kxkv

≤ kAk
°°°A−1°°°

°°°b− bb°°°
v

kbkv
where k·kv is some vector norm and k·k is an associ-
ated matrix norm.

Proof :

Ax−Abx = b− bb
A (x− bx) = b− bb

x− bx = A−1
³
b− bb´

kx− bxkv =
°°°A−1 ³b− bb´°°°

v

≤
°°°A−1°°° °°°b− bb°°°

v

kx− bxkv
kxkv

≤
°°°A−1°°° °°°b− bb°°°

v

kxkv



Rewrite this as

kx− bxkv
kxkv

≤ kAk
°°°A−1°°°

°°°b− bb°°°
v

kAk kxkv
Since Ax = b, we have

kbkv = kAxkv ≤ kAk kxkv
Using this,

kx− bxkv
kxkv

≤ kAk
°°°A−1°°°

°°°b− bb°°°
v

kbkv
This completes the proof of the earlier assertion.

The quantity

cond(A) = kAk
°°°A−1°°°

is called a condition number for the matrix A.



EXAMPLE. Recall the earlier example:

7x1 + 10x2 = 1
5x1 + 7x2 = .7

"
x1
x2

#
=

"
0
.1

#

7bx1 + 10bx2 = 1.01
5bx1 + 7bx2 = .69

" bx1bx2
#
=

"
−.17
.22

#
Then

kbk∞ = 1,
°°°b− bb°°°∞ = .01

kxk∞ = .1, kx− bxk∞ = .17

A =

"
7 10
5 7

#
, A−1 =

"
−7 10
5 −7

#
kAk = 17,

°°°A−1°°° = 17, cond(A) = 289

kx− bxk∞
kxk∞

÷
°°°b− bb°°°∞
kbk∞

=
1.7

.01
= 170 ≤ cond(A)

kx− bxk∞
kxk∞

≤ cond(A)
°°°b− bb°°°∞
kbk∞



The result

kx− bxkv
kxkv

≤ cond(A)
°°°b− bb°°°

v

kbkv
has another aspect which we do not prove here. Given

any matrix A, then there is a vector b and a nearby

perturbation bb for which the above inequality can be
replaced by equality. Moreover, there is no simple way

to know of these b and bb in advance. For such b andbb, we have
cond(A) =

kx− bxkv
kxkv

÷
°°°b− bb°°°

v

kbkv
Thus if cond(A) is very large, say 108, then there are

b and bb for which
kx− bxkv
kxkv

= 108 ·
°°°b− bb°°°

v

kbkv
We call such systems ill-conditioned.



Recall an earlier discussion of error in Gaussian elim-

ination. Let bx denote an approximate solution for

Ax = b; perhaps bx is obtained by Gaussian elimina-
tion. Let x denote the exact solution. Then introduce

the residual

r = b−Abx
We then obtained x− bx = A−1r. But we could also
have discussed this as a special case of our present

results. Write

Ax = b and Abx = b− r ≡ bb
Then

kx− bxkv
kxkv

≤ cond(A)
°°°b− bb°°°

v

kbkv
becomes

kx− bxkv
kxkv

≤ cond(A)krkvkbkv



ILL-CONDITIONED EXAMPLE

Define the 4× 4 Hilbert matrix:

H4 =


1 1

2
1
3

1
4

1
2

1
3

1
4

1
5

1
3

1
4

1
5

1
6

1
4

1
5

1
6

1
7


Its inverse is given by

H−14 =


16 −120 240 −140

−120 1200 −2700 1680
240 −2700 6480 −4200
−140 1680 −4200 2800


For the matrix row norm,

cond(H4) =
25

12
· 13620 = 28375

Thus rounding error in defining b should lead to errors

in solving H4x = b that are larger than the rounding

errors by a factor of 104 or more.


