
SOLVING LINEAR SYSTEMS

We want to solve the linear system

a1,1x1 + · · ·+ a1,nxn = b1
...

an,1x1 + · · ·+ an,nxn = bn

This will be done by the method used in beginning

algebra, by successively eliminating unknowns from

equations, until eventually we have only one equation

in one unknown. This process is known as Gaussian

elimination. To put it onto a computer, however, we

must be more precise than is generally the case in high

school algebra.

We begin with the linear system

3x1 − 2x2 − x3 = 0 (E1)
6x1 − 2x2 + 2x3 = 6 (E2)
−9x1 + 7x2 + x3 = −1 (E3)



3x1 − 2x2 − x3 = 0 (E1)
6x1 − 2x2 + 2x3 = 6 (E2)
−9x1 + 7x2 + x3 = −1 (E3)

[1] Eliminate x1 from equations (E2) and (E3). Sub-

tract 2 times (E1) from (E2); and subtract −3 times

(E1) from (E3). This yields

3x1 − 2x2 − x3 = 0 (E1)
2x2 + 4x3 = 6 (E2)
x2 − 2x3 = −1 (E3)

[2] Eliminate x2 from equation (E3). Subtract 1
2 times

(E2) from (E3). This yields

3x1 − 2x2 − x3 = 0 (E1)
2x2 + 4x3 = 6 (E2)
−4x3 = −4 (E3)

Using back substitution, solve for x3, x2, and x1, ob-

taining

x3 = x2 = x1 = 1



In the computer, we work on the arrays rather than

on the equations. To illustrate this, we repeat the

preceding example using array notation.

The original system is Ax = b, with

A =

 3 −2 −1
6 −2 2
−9 7 1

 , b =

 0
6
−1


We often write these in combined form as an aug-

mented matrix:

[A | b] =

 3 −2 −1
6 −2 2
−9 7 1

∣∣∣∣∣∣∣
0
6
−1


In step 1, we eliminate x1 from equations 2 and 3.

We multiply row 1 by 2 and subtract it from row 2;

and we multiply row 1 by -3 and subtract it from row

3. This yields  3 −2 −1
0 2 4
0 1 −2

∣∣∣∣∣∣∣
0
6
−1





 3 −2 −1
0 2 4
0 1 −2

∣∣∣∣∣∣∣
0
6
−1


In step 2, we eliminate x2 from equation 3. We mul-

tiply row 2 by 1
2 and subtract from row 3. This yields 3 −2 −1

0 2 4
0 0 −4

∣∣∣∣∣∣∣
0
6
−4


Then we proceed with back substitution as previously.



For the general case, we reduce

[A | b] =


a

(1)
1,1 · · · a

(1)
1,n

... . . . ...

a
(1)
n,1 · · · a

(1)
n,n

∣∣∣∣∣∣∣∣∣∣
b

(1)
1
...

b
(1)
n


in n− 1 steps to the form

a
(1)
1,1 · · · a

(1)
1,n

0 . . . ...
... . . .

0 · · · 0 a
(n)
n,n

∣∣∣∣∣∣∣∣∣∣∣∣

b
(1)
1
...
...

b
(n)
n


More simply, and introducing new notation, this is

equivalent to the matrix-vector equation Ux = g:
u1,1 · · · u1,n

0 . . . ...
... . . .
0 · · · 0 un,n



x1
...
...
xn

 =


g1
...
...
gn





This is the linear system

u1,1x1 + u1,2x2 + · · ·+ u1,n−1xn−1 + u1,nxn = g1
...

un−1,n−1xn−1 + un−1,nxn = gn−1
un,nxn = gn

We solve for xn, then xn−1, and backwards to x1.

This process is called back substitution.

xn =
gn

un,n

uk =
gk −

{
uk,k+1xk+1 + · · ·+ uk,nxn

}
uk,k

for k = n−1, ..., 1. What we have done here is simply

a more carefully defined and methodical version of

what you have done in high school algebra.



How do we carry out the conversion of
a

(1)
1,1 · · · a

(1)
1,n

... . . . ...

a
(1)
n,1 · · · a

(1)
n,n

∣∣∣∣∣∣∣∣∣∣
b

(1)
1
...

b
(1)
n


to 

a
(1)
1,1 · · · a

(1)
1,n

0 . . . ...
... . . .

0 · · · 0 a
(n)
n,n

∣∣∣∣∣∣∣∣∣∣∣∣

b
(1)
1
...
...

b
(n)
n


To help us keep track of the steps of this process, we

will denote the initial system by

[A(1) | b(1)] =


a

(1)
1,1 · · · a

(1)
1,n

... . . . ...

a
(1)
n,1 · · · a

(1)
n,n

∣∣∣∣∣∣∣∣∣∣
b

(1)
1
...

b
(1)
n


Initially we will make the assumption that every pivot

element will be nonzero; and later we remove this

assumption.



Step 1. We will eliminate x1 from equations 2 thru

n. Begin by defining the multipliers

mi,1 =
a

(1)
i,1

a
(1)
1,1

, i = 2, ..., n

Here we are assuming the pivot element a
(1)
1,1 6= 0.

Then in succession, multiply mi,1 times row 1 (called

the pivot row) and subtract the result from row i.

This yields new matrix elements

a
(2)
i,j = a

(1)
i,j −mi,1a

(1)
1,j , j = 2, ..., n

b
(2)
i = b

(1)
i −mi,1b

(1)
1

for i = 2, ..., n.

Note that the index j does not include j = 1. The

reason is that with the definition of the multipliermi,1,

it is automatic that

a
(2)
i,1 = a

(1)
i,1 −mi,1a

(1)
1,1 = 0, i = 2, ..., n



The augmented matrix now is

[A(2) | b(2)] =



a
(1)
1,1 a

(1)
1,2 · · · a

(1)
1,n

0 a
(2)
2,2 a

(2)
2,n

... ... . . . ...

0 a
(2)
n,2 · · · a

(2)
n,n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b
(1)
1

b
(2)
2
...

b
(2)
n


Step k: Assume that for i = 1, ..., k− 1 the unknown

xi has been eliminated from equations i + 1 thru n.

We have the augmented matrix

[A(k) | b(k)] =



a
(1)
1,1 a

(1)
1,2 · · · a

(1)
1,n

0 a
(2)
2,2 · · · a

(2)
2,n

. . . . . . ...

... 0 a
(k)
k,k · · · a

(k)
k,n

... ... . . . ...

0 · · · 0 a
(k)
n,k · · · a

(k)
n,n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b
(1)
1

b
(2)
2
...

b
(k)
k
...

b
(k)
n





We want to eliminate unknown xk from equations k+

1 thru n. Begin by defining the multipliers

mi,k =
a

(k)
i,k

a
(k)
k,k

, i = k + 1, ..., n

The pivot element is a
(k)
k,k, and we assume it is nonzero.

Using these multipliers, we eliminate xk from equa-

tions k + 1 thru n. Multiply mi,k times row k (the

pivot row) and subtract from row i, for i = k+1 thru

n.

a
(k+1)
i,j = a

(k)
i,j −mi,ka

(k)
k,j , j = k + 1, ..., n

b
(k+1)
i = b

(k)
i −mi,kb

(k)
k

for i = k+ 1, ..., n. This yields the augmented matrix



[A(k+1) | b(k+1)]:

a
(1)
1,1 · · · a

(1)
1,n

0 . . . ...

a
(k)
k,k a

(k)
k,k+1 · · · a

(k)
k,n

... 0 a
(k+1)
k+1,k+1 a

(k+1)
k+1,n

... ... . . . ...

0 · · · 0 a
(k+1)
n,k+1 · · · a

(k+1)
n,n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b
(1)
1
...

b
(k)
k

b
(k+1)
k+1

...

b
(k+1)
n


Doing this for k = 1, 2, ..., n − 1 leads to the upper

triangular system with the augmented matrix
a

(1)
1,1 · · · a

(1)
1,n

0 . . . ...
... . . .

0 · · · 0 a
(n)
n,n

∣∣∣∣∣∣∣∣∣∣∣∣

b
(1)
1
...
...

b
(n)
n


We later remove the assumption

a
(k)
k,k 6= 0, k = 1, 2, ..., n



QUESTIONS

• How do we remove the assumption on the pivot

elements?

• How many operations are involved in this proce-

dure?

• How much error is there in the computed solution

due to rounding errors in the calculations?

• How does the machine architecture affect the im-

plementation of this algorithm.



PARTIAL PIVOTING

Recall the reduction of

[A(1) | b(1)] =


a

(1)
1,1 · · · a

(1)
1,n

... . . . ...

a
(1)
n,1 · · · a

(1)
n,n

∣∣∣∣∣∣∣∣∣∣
b

(1)
1
...

b
(1)
n


to

[A(2) | b(2)] =



a
(1)
1,1 a

(1)
1,2 · · · a

(1)
1,n

0 a
(2)
2,2 a

(2)
2,n

... ... . . . ...

0 a
(2)
n,2 · · · a

(2)
n,n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b
(1)
1

b
(2)
2
...

b
(2)
n


What if a

(1)
1,1 = 0? In that case we look for an equation

in which the x1 is present. To do this in such a way

as to avoid zero the maximum extant possible, we do

the following.



Look at all the elements in the first column,

a
(1)
1,1, a

(1)
2,1, ..., a

(1)
n,1

and pick the largest in size. Say it is∣∣∣∣a(1)
k,1

∣∣∣∣ = max
j=1,...,n

∣∣∣∣a(1)
j,1

∣∣∣∣
Then interchange equations 1 and k, which means

interchanging rows 1 and k in the augmented matrix

[A(1) | b(1)]. Then proceed with the elimination of x1

from equations 2 thru n as before.

Having obtained

[A(2) | b(2)] =



a
(1)
1,1 a

(1)
1,2 · · · a

(1)
1,n

0 a
(2)
2,2 a

(2)
2,n

... ... . . . ...

0 a
(2)
n,2 · · · a

(2)
n,n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b
(1)
1

b
(2)
2
...

b
(2)
n


what if a

(2)
2,2 = 0? Then we proceed as before.



Among the elements

a
(2)
2,2, a

(2)
3,2, ..., a

(2)
n,2

pick the one of largest size:∣∣∣∣a(2)
k,2

∣∣∣∣ = max
j=2,...,n

∣∣∣∣a(2)
j,2

∣∣∣∣
Interchange rows 2 and k. Then proceed as before to

eliminate x2 from equations 3 thru n, thus obtaining

[A(3) | b(3)] =



a
(1)
1,1 a

(1)
1,2 a

(1)
1,3 · · · a

(1)
1,n

0 a
(2)
2,2 a

(2)
2,3 · · · a

(2)
2,n

0 0 a
(3)
3,3 · · · a

(3)
3,n

... ... ... . . . ...

0 0 a
(3)
n,3 · · · a

(3)
n,n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b
(1)
1

b
(2)
2

b
(3)
3
...

b
(3)
n



This is done at every stage of the elimination process.

This technique is called partial pivoting, and it is a

part of most Gaussian elimination programs (including

the one in the text).



Consequences of partial pivoting. Recall the defini-

tion of the elements obtained in the process of elimi-

nating x1 from equations 2 thru n.

mi,1 =
a

(1)
i,1

a
(1)
1,1

, i = 2, ..., n

a
(2)
i,j = a

(1)
i,j −mi,1a

(1)
1,j , j = 2, ..., n

b
(2)
i = b

(1)
i −mi,1b

(1)
1

for i = 2, ..., n. By our definition of the pivot element

a
(1)
1,1, we have∣∣∣mi,1∣∣∣ ≤ 1, i = 2, ..., n

Thus in the calculation of a
(2)
i,j and b

(2)
i , we have that

the elements do not grow rapidly in size. This is in

comparison to what might happen otherwise, in which

the multipliers mi,1 might have been very large. This

property is true of the multipliers at very step of the

elimination process:∣∣∣mi,k∣∣∣ ≤ 1, i = k + 1, ..., n, k = 1, ..., n− 1



The property∣∣∣mi,k∣∣∣ ≤ 1, i = k + 1, ..., n

leads to good error propagation properties in Gaussian

elimination with partial pivoting. The only error in

Gaussian elimination is that derived from the round-

ing errors in the arithmetic operations. For example,

at the first elimination step (eliminating x1 from equa-

tions 2 thru n),

a
(2)
i,j = a

(1)
i,j −mi,1a

(1)
1,j , j = 2, ..., n

b
(2)
i = b

(1)
i −mi,1b

(1)
1

The above property on the size of the multipliers pre-

vents these numbers and the errors in their calculation

from growing as rapidly as they might if no partial piv-

oting was used.

As an example of the improvement in accuracy ob-

tained with partial pivoting, see the example on pages

272-273.



OPERATION COUNTS

One of the major ways in which we compare the effi-

ciency of different numerical methods is to count the

number of needed arithmetic operations. For solving

the linear system

a1,1x1 + · · ·+ a1,nxn = b1
...

an,1x1 + · · ·+ an,nxn = bn

using Gaussian elimination, we have the following op-

eration counts.

1. A → U , where we are converting Ax = b to

Ux = g:

Divisions
n(n− 1)

2

Additions
n(n− 1)(2n− 1)

6

Multiplications
n(n− 1)(2n− 1)

6



2. b→ g:

Additions
n(n− 1)

2

Multiplications
n(n− 1)

2
3. Solving Ux = g:

Divisions n

Additions
n(n− 1)

2

Multiplications
n(n− 1)

2

On some machines, the cost of a division is much

more than that of a multiplication; whereas on others

there is not any important difference. We assume the

latter; and then the operation costs are as follows.

MD(A→ U) =
n
(
n2 − 1

)
3

MD(b→ g) =
n(n− 1)

2

MD(Find x) =
n(n+ 1)

2



AS(A→ U) =
n(n− 1)(2n− 1)

6

AS(b→ g) =
n(n− 1)

2

AS(Find x) =
n(n− 1)

2

Thus the total number of operations is

Additions
2n3 + 3n2 − 5n

6(
Multiplications
and Divisions

)
n3 + 3n2 − n

3

Both are around 1
3n

3, and thus the total operations

account is approximately

2

3
n3

What happens to the cost when n is doubled?



Solving Ax = b and Ax = c. What is the cost? Only

the modification of the right side is different in these

two cases. Thus the additional cost is(
MD(b→ g)
MD(Find x)

)
= n2

(
AS(b→ g)
AS(Find x)

)
= n(n− 1)

The total is around 2n2 operations, which is quite a

bit smaller than 2
3n

3 when n is even moderately large,

say n = 100.

Thus one can solve the linear system Ax = c at little

additional cost to that for solving Ax = b. This has

important consequences when it comes to estimation

of the error in computed solutions.



CALCULATING THE MATRIX INVERSE

Consider finding the inverse of a 3× 3 matrix

A =

 a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

 =
[
A∗,1, A∗,2, A∗,3

]
We want to find a matrix

X =
[
X∗,1, X∗,2, X∗,3

]
for which

AX = I

A
[
X∗,1, X∗,2, X∗,3

]
= [e1, e2, e3][

AX∗,1, AX∗,2, AX∗,3
]

= [e1, e2, e3]

This means we want to solve

AX∗,1 = e1, AX∗,2 = e2, AX∗,3 = e3

We want to solve three linear systems, all with the

same matrix of coefficients A.



In augmented matrix notation, we want to work with

[A | I] a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

∣∣∣∣∣∣∣
1 0 0
0 1 0
0 0 1


Then we proceed as before with a single linear system,

only now we have three right hand sides. We first

introduce zeros into positions 2 and 3 of column 1;

and then we introduce zero into position 3 of column

2. Following that, we will need to solve three upper

triangular linear systems by back substitution. See the

numerical example on pages 274-276.



MATRIX INVERSE EXAMPLE

A =

 1 1 −2
1 1 1
1 −1 0


 1 1 −2

1 1 1
1 −1 0

∣∣∣∣∣∣∣
1 0 0
0 1 0
0 0 1


m2,1 = 1 ↓ m3,1 = 1 1 1 −2
0 0 3
0 −2 2

∣∣∣∣∣∣∣
1 0 0
−1 1 0
−1 0 1


↓ 1 1 −2

0 −2 2
0 0 3

∣∣∣∣∣∣∣
1 0 0
−1 0 1
−1 1 0





 1 1 −2
0 −2 2
0 0 3

∣∣∣∣∣∣∣
1 0 0
−1 0 1
−1 1 0


Then by using back substitution to solve for each col-

umn of the inverse, we obtain

A−1 =


1
6

1
3

1
2

1
6

1
3 −

1
2

−1
3

1
3 0





COST OF MATRIX INVERSION

In calculating A−1, we are solving for the matrix X =[
X∗,1, X∗,2, . . . , X∗,n

]
where

A
[
X∗,1, X∗,2, . . . , X∗,n

]
= [e1, e2, . . . , en]

and ej is column j of the identity matrix. Thus we
are solving n linear systems

AX∗,1 = e1, AX∗,2 = e2, . . . , AX∗,n = en (1)

all with the same coefficient matrix. Returning to
the earlier operation counts for solving a single linear
system, we have the following.

Cost of triangulating A: approx. 2
3n

3 operations

Cost of solving Ax = b: 2n2 operations

Thus solving the n linear systems in (1) costs approx-
imately

2
3n

3 + n
(

2n2
)

= 8
3n

3 operations, approximately

It costs approximately four times as many operations
to invert A as to solve a single system. With attention
to the form of the right-hand sides in (1) this can be
reduced to 2n3 operations.



Matlab MATRIX OPERATIONS

To solve the linear system Ax = b in Matlab, use

x = A \ b

In Matlab, the command

inv (A)

will calculate the inverse of A.

There are many matrix operations built into Matlab,

both for general matrices and for special classes of

matrices. We do not discuss those here, but recom-

mend the student to investigate these thru the Matlab

help options.


