
MATRICES

Matrices are rectangular arrays of real or complex

numbers. With them, we define arithmetic operations

that are generalizations of those for real and complex

numbers. The general form a matrix of order m × n
is

A =

 a1,1 · · · a1,n
... . . . ...

am,1 · · · am,n


We say it has order m × n. Matrices that consist of

a single column are called column vectors, and those

consisting of a single row are called row vectors. In

both cases, they will have properties identical to the

geometric vectors studied earlier in mulitvariable cal-

culus. I assume that most of you have seen this mate-

rial previously in a course named linear algebra, matrix

algebra, or something similar. Section 6.2 in the text

is intended as both a quick introduction and review of

this material.



MATRIX ADDITION

Let A =
[
ai,j

]
and B =

[
bi,j

]
be matrices of order

m× n. Then

C = A+B

is another matrix of order m× n, with

ci,j = ai,j + bi,j

EXAMPLE. 1 2
3 4
5 6

 +

 1 −1
−1 1

1 −1

 =

 2 1
2 5
6 5





MULTIPLICATION BY A CONSTANT

c

 a1,1 · · · a1,n
... . . . ...

am,1 · · · am,n

 =

 ca1,1 · · · ca1,n
... . . . ...

cam,1 · · · cam,n



EXAMPLE.

5

 1 2
3 4
5 6

 =

 5 10
15 20
25 30



(−1)

[
a b
c d

]
=

[
−a −b
−c −d

]



THE ZERO MATRIX 0

Define the zero matrix of order m × n as the matrix

of that order having all zero entries. It is sometimes

written as 0m×n, but more commonly as simply 0.

Then for any matrix A of order m× n,

A+ 0 = 0 +A = A

The zero matrix 0m×n acts in the same role as does

the number zero when doing arithmetic with real and

complex numbers.

EXAMPLE.[
1 2
3 4

]
+

[
0 0
0 0

]
=

[
1 2
3 4

]



We denote by −A the solution of the equation

A+B = 0

It is the matrix obtained by taking the negative of all

of the entries in A. For example,[
a b
c d

]
+

[
−a −b
−c −d

]
=

[
0 0
0 0

]

⇒ −
[
a b
c d

]
=

[
−a −b
−c −d

]
= (−1)

[
a b
c d

]

−
[
a1,1 a1,2
a2,1 a2,2

]
=

[
−a1,1 −a1,2
−a2,1 −a2,2

]



MATRIX MULTIPLICATION

Let A =
[
ai,j

]
have order m× n and B =

[
bi,j

]
have

order n× p. Then

C = AB

is a matrix of order m× p and

ci,j = Ai,∗B∗,j
= ai,1b1,j + ai,2b2,j + · · ·+ ai,nbn,j

or equivalently

ci,j =
[
ai,1 ai,2 · · · ai,n

] 
b1,j
b2,j

...
bn,j


= ai,1b1,j + ai,2b2,j + · · ·+ ai,nbn,j



EXAMPLES

[
1 2 3
4 5 6

]  1 2
3 4
5 6

 =

[
22 28
49 64

]

 1 2
3 4
5 6

 [ 1 2 3
4 5 6

]
=

 9 12 15
19 26 33
29 40 51


 a1,1 · · · a1,n

... . . . ...
an,1 · · · an,n


 x1

...
xn

 =

 a1,1x1 + · · ·+ a1,nxn
...

an,1x1 + · · ·+ an,nxn


Thus we write the linear system

a1,1x1 + · · ·+ a1,nxn = b1
...

an,1x1 + · · ·+ an,nxn = bn

as

Ax = b



THE IDENTITY MATRIX I

For a given integer n ≥ 1, Define In to be the matrix

of order n × n with 1’s in all diagonal positions and

zeros elsewhere:

In =


1 0 . . . 0
0 1 0
... . . . ...
0 . . . 1


More commonly it is denoted by simply I.

Let A be a matrix of order m× n. Then

AIn = A, ImA = A

The identity matrix I acts in the same role as does

the number 1 when doing arithmetic with real and

complex numbers.



THE MATRIX INVERSE

Let A be a matrix of order n×n for some n ≥ 1. We

say a matrix B is an inverse for A if

AB = BA = I

It can be shown that if an inverse exists for A, then

it is unique.

EXAMPLES. If ad− bc 6= 0, then[
a b
c d

]−1

=
1

ad− bc

[
d −b
−c a

]
[

1 2
2 2

]−1

=

[ −1 1

1 −1
2

]


1 1

2
1
3

1
2

1
3

1
4

1
3

1
4

1
5


−1

=

 9 −36 30
−36 192 −180

30 −180 180





Recall the earlier theorem on the solution of linear

systems Ax = b with A a square matrix.

Theorem. The following are equivalent statements.

1. For each b, there is exactly one solution x.

2. For each b, there is a solution x.

3. The homogeneous system Ax = 0 has only the

solution x = 0.

4. det (A) 6= 0.

5. A−1 exists.



EXAMPLE

det

 1 2 3
4 5 6
7 8 9

 = 0

Therefore, the linear system 1 2 3
4 5 6
7 8 9


 x1
x2
x3

 =

 b1
b2
b3


is not always solvable, the coefficient matrix does not

have an inverse, and the homogeneous system Ax = 0

has a solution other than the zero vector, namely 1 2 3
4 5 6
7 8 9


 1
−2

1

 =

 0
0
0





The arithmetic properties of matrix addition and mul-

tiplication are listed on page 256, and some of them

require some work to show. For example, consider

showing the distributive law for matrix multiplication,

(AB)C = A (BC)

with A,B,C matrices of respective ordersm×n, n×p,

and p× q, respectively. Writing this out, we want to

show

p∑
k=1

(AB)i,kCk,l =
n∑
j=1

Ai,j (BC)j,l

for 1 ≤ i ≤ m, 1 ≤ l ≤ q.

With new situations, we often use notation to suggest

what should be true. But this is done only after de-

ciding what actually is true. You should read carefully

the properties given in the text on page 256.



PARTITIONED MATRICES

Matrices can be built up from smaller matrices; or

conversely, we can decompose a large matrix into a

matrix of smaller matrices. For example, consider

A =

 1 2 0
2 1 1
0 −1 5

 =

[
B c
d e

]

B =

[
1 2
2 1

]
c =

[
0
1

]
d =

[
0 −1

]
e = 5

Matlab allows you to build up larger matrices out of

smaller matrices in exactly this manner; and smaller

matrices can be defined as portions of larger matrices.

We will often write an n × n square matrix in terms

of its columns:

A =
[
A∗,1, ..., A∗,n

]
For the n× n identity matrix I, we write

I = [e1, ..., en]

with ej denoting a column vector with a 1 in position

j and zeros elsewhere.



ARITHMETIC OF PARTITIONED MATRICES

As with matrices, we can do addition and multiplica-

tion with partitioned matrices provided the individual

constituent parts have the proper orders.

For example, let A,B,C,D be n× n matrices. Then[
I A
B I

] [
I C
D I

]
=

[
I +AD C +A
B +D I +BC

]

Let A be n × n and x be a column vector of length

n. Then

Ax =
[
A∗,1, ..., A∗,n

]  x1
...
xn

 = x1A∗,1+· · ·+xnA∗,n

Compare this to a1,1 · · · a1,n
... . . . ...

an,1 · · · an,n


 x1

...
xn

 =

 a1,1x1 + · · ·+ a1,nxn
...

an,1x1 + · · ·+ an,nxn





PARTITIONED MATRICES IN Matlab

In Matlab, matrices can be constructed using smaller

matrices. For example, let

A = [1, 2; 3, 4]; x = [5, 6]; y = [7, 8]′;

Then

B = [A, y; x, 9];

forms the matrix

B =

 1 2 7
3 4 8
5 6 9





ELEMENTARY ROW OPERATIONS

As preparation for the discussion of Gaussian Elimi-

nation in Section 6.3, we introduce three elementary

row operations on general rectangular matrices. They

are:

i) Interchange of two rows.

ii) Multiplication of a row by a nonzero scalar.

iii) Addition of a nonzero multiple of one row to an-

other row.

Consider the rectangular matrix

A =

 3 3 3 1
2 2 3 1
1 2 3 1


We add row 2 times (−1) to row 1, and then add row

3 times (−1) to row 2 to obtain the matrix: 1 1 0 0
1 0 0 0
1 2 3 1





Add row 2 times (−1) to row 1, and to row 3 as well: 0 1 0 0
1 0 0 0
0 2 3 1


Add row 1 times (−2) to row 3: 0 1 0 0

1 0 0 0
0 0 3 1


Interchange row 1 and row 2: 1 0 0 0

0 1 0 0
0 0 3 1


Finally, we multiply row 3 by 1/3: 1 0 0 0

0 1 0 0
0 0 1 1/3


This is obtained from A using elementary row opera-

tions. A reverse sequence of operations of the same

type converts this result back to A.



OPERATIONS COUNT

It is important to compare algorithms by comparing

both their accuracy and their cost. For cost, we look

at the number of arithmetic operations. As a simple

example, look at the cost of evaluating

b = Ax

where A is a square matrix of order n× n and x is a

column vector of length n. Then

bi =
n∑
j=1

ai,jxj, i = 1, . . . , n.

Each component bi requires n multiplications and

n−1 additions. Thus the computations of Ax requires

n2 multiplications and n (n− 1) ≈ n2 additions.

Doubling n increases the cost by a factor of 4.

If A and B are square matrices of order n× n, then

calculating AB requires n3 multiplications and

n2 (n− 1) ≈ n3 additions. Doubling n increases the

cost by a factor of 8.


