
NUMERICAL INTEGRATION:

ANOTHER APPROACH

We look for numerical integration formulasZ 1
−1

f(x) dx ≈
nX

j=1

wjf(xj)

which are to be exact for polynomials of as large a

degree as possible. There are no restrictions placed

on the nodes
n
xj
o
nor the weights

n
wj

o
in working

towards that goal. The motivation is that if it is exact

for high degree polynomials, then perhaps it will be

very accurate when integrating functions that are well

approximated by polynomials.

There is no guarantee that such an approach will work.

In fact, it turns out to be a bad idea when the node

points
n
xj
o
are required to be evenly spaced over the

interval of integration. But without this restriction onn
xj
o
we are able to develop a very accurate set of

quadrature formulas.



The case n = 1. We want a formula

w1f(x1) ≈
Z 1
−1

f(x) dx

The weight w1 and the node x1 are to be so chosen

that the formula is exact for polynomials of as large a

degree as possible.

To do this we substitute f(x) = 1 and f(x) = x. The

first choice leads to

w1 · 1 =
Z 1
−1
1 dx

w1 = 2

The choice f(x) = x leads to

w1x1 =
Z 1
−1

x dx = 0

x1 = 0

The desired formula isZ 1
−1

f(x) dx ≈ 2f(0)
It is called the midpoint rule and was introduced in

the problems of Section 5.1.



The case n = 2. We want a formula

w1f(x1) +w2f(x2) ≈
Z 1
−1

f(x) dx

The weights w1, w2 and the nodes x1, x2 are to be so

chosen that the formula is exact for polynomials of as

large a degree as possible. We substitute and force

equality for

f(x) = 1, x, x2, x3

This leads to the system

w1 +w2 =
Z 1
−1
1 dx = 2

w1x1 + w2x2 =
Z 1
−1

xdx = 0

w1x
2
1 + w2x

2
2 =

Z 1
−1

x2 dx =
2

3

w1x
3
1 + w2x

3
2 =

Z 1
−1

x3 dx = 0

The solution is given by

w1 = w2 = 1, x1 =
−1

sqrt(3)
, x2 =

1
sqrt(3)



This yields the formulaZ 1
−1

f(x) dx ≈ f
µ

−1
sqrt(3)

¶
+ f

µ
1

sqrt(3)

¶
(1)

We say it has degree of precision equal to 3 since it

integrates exactly all polynomials of degree ≤ 3. We

can verify directly that it does not integrate exactly

f(x) = x4. Z 1
−1

x4 dx = 2
5

f
µ

−1
sqrt(3)

¶
+ f

µ
1

sqrt(3)

¶
= 2
9

Thus (1) has degree of precision exactly 3.

EXAMPLE IntegrateZ 1
−1

dx

3 + x
= log 2

.
= 0.69314718

The formula (1) yields

1

3 + x1
+

1

3 + x2
= 0.69230769

Error = .000839



THE GENERAL CASE

We want to find the weights {wi} and nodes {xi} so
as to have Z 1

−1
f(x) dx ≈

nX
j=1

wjf(xj)

be exact for a polynomials f(x) of as large a degree
as possible. As unknowns, there are n weights wi and
n nodes xi. Thus it makes sense to initially impose
2n conditions so as to obtain 2n equations for the 2n
unknowns. We require the quadrature formula to be
exact for the cases

f(x) = xi, i = 0, 1, 2, ..., 2n− 1
Then we obtain the system of equations

w1x
i
1 +w2x

i
2 + · · ·+ wnx

i
n =

Z 1
−1

xi dx

for i = 0, 1, 2, ..., 2n− 1. For the right sides,
Z 1
−1

xi dx =


2

i+ 1
, i = 0, 2, ..., 2n− 2

0, i = 1, 3, ..., 2n− 1



The system of equations

w1x
i
1 + · · ·+ wnx

i
n =

Z 1
−1

xi dx, i = 0, ..., 2n− 1
has a solution, and the solution is unique except for

re-ordering the unknowns. The resulting numerical

integration rule is called Gaussian quadrature.

In fact, the nodes and weights are not found by solv-

ing this system. Rather, the nodes and weights have

other properties which enable them to be found more

easily by other methods. There are programs to pro-

duce them; and most subroutine libraries have either

a program to produce them or tables of them for com-

monly used cases.



SYMMETRY OF FORMULA

The nodes and weights possess symmetry properties.

In particular,

xi = −xn−i, wi = wn−i, i = 1, 2, ..., n

A table of these nodes and weights for n = 2, ..., 8 is

given in the text in Table 5.7. A MATLAB program

to give the nodes and weights for an arbitrary finite

interval [a, b] is given in the class account.

In addition, it can be shown that all weights satisfy

wi > 0

for all n > 0. This is considered a very desirable

property from a practical point of view. Moreover, it

permits us to develop a useful error formula.



CHANGE OF INTERVAL

OF INTEGRATION

Integrals on other finite intervals [a, b] can be con-

verted to integrals over [−1, 1], as follows:Z b

a
F (x) dx =

b− a

2

Z 1
−1

F

Ã
b+ a+ t(b− a)

2

!
dt

based on the change of integration variables

x =
b+ a+ t(b− a)

2
, −1 ≤ t ≤ 1

EXAMPLE Over the interval [0, π], use

x = (1 + t) π2

Then Z π

0
F (x) dx = π

2

Z 1
−1

F
³
(1 + t) π2

´
dt



EXAMPLE Consider again the integrals used as ex-

amples in Section 5.1:

I(1) =
Z 1
0
e−x2dx .

= .74682413281234

I(2) =
Z 4
0

dx

1 + x2
= arctan 4

I(3) =
Z 2π
0

dx

2 + cosx
=

2π

sqrt(3)

n I − I(1) I − I(2) I − I(3)

2 2.29E − 4 −2.33E − 2 8.23E − 1
3 9.55E − 6 −3.49E − 2 −4.30E − 1
4 −3.35E − 7 −1.90E − 3 1.77E − 1
5 6.05E − 9 1.70E − 3 −8.12E − 2
6 −7.77E − 11 2.74E − 4 3.55E − 2
7 8.60E − 13 −6.45E − 5 −1.58E − 2
10 ∗ 1.27E − 6 1.37E − 3
15 ∗ 7.40E − 10 −2.33E − 5
20 ∗ ∗ 3.96E − 7

Compare these results with those of Section 5.1.



AN ERROR FORMULA

The usual error formula for Gaussian quadrature for-

mula,

En(f) =
Z 1
−1

f(x) dx−
nX

j=1

wjf(xj)

is not particularly intuitive. It is given by

En(f) = en
f (2n)(cn)

(2n)!

en =
22n+1 (n!)4

(2n+ 1) [(2n)!]2
≈ π

4n

for some a ≤ cn ≤ b.

To help in understanding the implications of this error

formula, introduce

Mk = max−1≤x≤1

¯̄̄
f (k)(x)

¯̄̄
k!



With many integrands f(x), this sequence {Mk} is
bounded or even decreases to zero. For example,

f(x) =


cosx

1

2 + x

⇒ Mk ≤

1

k!
1

Then for our error formula,

En(f) = en
f (2n)(cn)

(2n)!
|En(f)| ≤ enM2n (2)

By other methods, we can show

en ≈ π

4n

When combined with (2) and an assumption of uni-

form boundedness for {Mk}, we have the error de-
creases by a factor of at least 4 with each increase of

n to n + 1. Compare this to the convergence of the

trapezoidal and Simpson rules for such functions, to

help explain the very rapid convergence of Gaussian

quadrature.



A SECOND ERROR FORMULA

Let f(x) be continuous for a ≤ x ≤ b; let n ≥ 1.

Then, for the Gaussian numerical integration formula

I ≡
Z b

a
f(x) dx ≈

nX
j=1

wjf(xj) ≡ In

on [a, b], the error in In satisfies

|I(f)− In(f)| ≤ 2 (b− a) ρ2n−1(f) (3)

Here ρ2n−1(f) is the minimax error of degree 2n− 1
for f(x) on [a, b]:

ρm(f) = min
deg(p)≤m

"
max
a≤x≤b |f(x)− p(x)|

#
, m ≥ 0



EXAMPLE Let f(x) = e−x2. Then the minimax er-
rors ρm(f) are given in the following table.

m ρm(f) m ρm(f)
1 5.30E− 2 6 7.82E− 6
2 1.79E− 2 7 4.62E− 7
3 6.63E− 4 8 9.64E− 8
4 4.63E− 4 9 8.05E− 9
5 1.62E− 5 10 9.16E− 10

Using this table, apply (3) to

I =
Z 1
0
e−x2 dx

For n = 3, (3) implies

|I − I3| ≤ 2ρ5
µ
e−x2

¶
.
= 3.24× 10−5

The actual error is 9.55E− 6.



INTEGRATING

A NON-SMOOTH INTEGRAND

Consider using Gaussian quadrature to evaluate

I =
Z 1
0
sqrt(x) dx = 2

3

n I − In Ratio
2 −7.22E− 3
4 −1.16E− 3 6.2
8 −1.69E− 4 6.9
16 −2.30E− 5 7.4
32 −3.00E− 6 7.6
64 −3.84E− 7 7.8

The column labeled Ratio is defined by

I − I1
2n

I − In

It is consistent with I−In ≈ c

n3
, which can be proven

theoretically. In comparison for the trapezoidal and

Simpson rules, I − In ≈ c

n1.5



WEIGHTED GAUSSIAN QUADRATURE

Consider needing to evaluate integrals such asZ 1
0
f(x) log xdx,

Z 1
0
x
1
3f(x) dx

How do we proceed? Consider numerical integration

formulas Z b

a
w(x)f(x) dx ≈

nX
j=1

wjf(xj)

in which f(x) is considered a “nice” function (one

with several continuous derivatives). The function

w(x) is allowed to be singular, but must be integrable.

We assume here that [a, b] is a finite interval. The

function w(x) is called a “weight function”, and it is

implicitly absorbed into the definition of the quadra-

ture weights {wi}. We again determine the nodes

{xi} and weights {wi} so as to make the integration
formula exact for f(x) a polynomial of as large a de-

gree as possible.



The resulting numerical integration formulaZ b

a
w(x)f(x) dx ≈

nX
j=1

wjf(xj)

is called a Gaussian quadrature formula with weight

function w(x). We determine the nodes {xi} and
weights {wi} by requiring exactness in the above for-
mula for

f(x) = xi, i = 0, 1, 2, ..., 2n− 1

To make the derivation more understandable, we con-

sider the particular caseZ 1
0
x
1
3f(x) dx ≈

nX
j=1

wjf(xj)

We follow the same pattern as used earlier.



The case n = 1. We want a formula

w1f(x1) ≈
Z 1
0
x
1
3f(x) dx

The weight w1 and the node x1 are to be so chosen

that the formula is exact for polynomials of as large a

degree as possible. Choosing f(x) = 1, we have

w1 =
Z 1
0
x
1
3 dx = 3

4

Choosing f(x) = x, we have

w1x1 =

1Z
0

x
1
3xdx = 3

7

x1 = 4
7

Thus Z 1
0
x
1
3f(x) dx ≈ 3

4f
³
4
7

´
has degree of precision 1.



The case n = 2. We want a formula

w1f(x1) +w2f(x2) ≈
Z 1
0
x
1
3f(x) dx

The weights w1, w2 and the nodes x1, x2 are to be

so chosen that the formula is exact for polynomials of

as large a degree as possible. We determine them by

requiring equality for

f(x) = 1, x, x2, x3

This leads to the system

w1 +w2 =

1Z
0

x
1
3 dx = 3

4

w1x1 + w2x2 =

1Z
0

xx
1
3 dx = 3

7

w1x
2
1 + w2x

2
2 =

1Z
0

x2x
1
3 dx = 3

10

w1x
3
1 + w2x

3
2 =

1Z
0

x3x
1
3 dx = 3

13



The solution is

x1 =
7
13 − 3

65 sqrt(35), x2 =
7
13 +

3
65 sqrt(35)

w1 =
3
8 − 3

392 sqrt(35), w2 =
3
8 +

3
392 sqrt(35)

Numerically,

x1 = .2654117024, x2 = .8115113746
w1 = .3297238792, w2 = .4202761208

The formulaZ 1
0
x
1
3f(x) dx ≈ w1f(x1) +w2f(x2) (4)

has degree of precision 3.



EXAMPLE Consider evaluating the integralZ 1
0
x
1
3 cosx dx (5)

In applying (4), we take f(x) = cosx. Then

w1f(x1) + w2f(x2) = 0.6074977951

The true answer isZ 1
0
x
1
3 cosx dx

.
= 0.6076257393

and our numerical answer is in error by E2
.
= .000128.

This is quite a good answer involving very little com-

putational effort (once the formula has been deter-

mined). In contrast, the trapezoidal and Simpson

rules applied to (5) would converge very slowly be-

cause the first derivative of the integrand is singular

at the origin.



CHANGE OF VARIABLES

As a side note to the preceding example, we observe

that the change of variables x = t3 transforms the

integral (5) to

3
Z 1
0
t3 cos

³
t3
´
dt

and both the trapezoidal and Simpson rules will per-

form better with this formula, although still not as

good as our weighted Gaussian quadrature.

A change of the integration variable can often im-

prove the performance of a standard method, usually

by increasing the differentiability of the integrand.

EXAMPLE Using x = tr for some r > 1, we haveZ 1
0
g(x) log x dx = r

Z 1
0
tr−1g (tr) log t dt

The new integrand is generally smoother than the

original one.


