TRAPEZOIDAL METHOD
 ERROR FORMULA

Theorem Let $f(x)$ have two continuous derivatives on the interval $a \leq x \leq b$. Then

$$
E_{n}^{T}(f) \equiv \int_{a}^{b} f(x) d x-T_{n}(f)=-\frac{h^{2}(b-a)}{12} f^{\prime \prime}\left(c_{n}\right)
$$

for some c_{n} in the interval $[a, b]$.

Later I will say something about the proof of this result, as it leads to some other useful formulas for the error.

The above formula says that the error decreases in a manner that is roughly proportional to h^{2}. Thus doubling n (and halving h) should cause the error to decrease by a factor of approximately 4 . This is what we observed with a past example from the preceding section.

Example. Consider evaluating

$$
I=\int_{0}^{2} \frac{d x}{1+x^{2}}
$$

using the trapezoidal method $T_{n}(f)$. How large should n be chosen in order to ensure that

$$
\left|E_{n}^{T}(f)\right| \leq 5 \times 10^{-6}
$$

We begin by calculating the derivatives:

$$
f^{\prime}(x)=\frac{-2 x}{\left(1+x^{2}\right)^{2}}, \quad f^{\prime \prime}(x)=\frac{-2+6 x^{2}}{\left(1+x^{2}\right)^{3}}
$$

From a graph of $f^{\prime \prime}(x)$,

$$
\max _{0 \leq x \leq 2}\left|f^{\prime \prime}(x)\right|=2
$$

Recall that $b-a=2$. Therefore,

$$
\begin{aligned}
E_{n}^{T}(f) & =-\frac{h^{2}(b-a)}{12} f^{\prime \prime}\left(c_{n}\right) \\
\left|E_{n}^{T}(f)\right| & \leq \frac{h^{2}(2)}{12} \cdot 2=\frac{h^{2}}{3}
\end{aligned}
$$

$$
\begin{aligned}
E_{n}^{T}(f) & =-\frac{h^{2}(b-a)}{12} f^{\prime \prime}\left(c_{n}\right) \\
\left|E_{n}^{T}(f)\right| & \leq \frac{h^{2} 2}{12} \cdot 2=\frac{h^{2}}{3}
\end{aligned}
$$

We bound $\left|f^{\prime \prime}\left(c_{n}\right)\right|$ since we do not know c_{n}, and therefore we must assume the worst possible case, that which makes the error formula largest. That is what has been done above.

When do we have

$$
\begin{equation*}
\left|E_{n}^{T}(f)\right| \leq 5 \times 10^{-6} \tag{1}
\end{equation*}
$$

To ensure this, we choose h so small that

$$
\frac{h^{2}}{3} \leq 5 \times 10^{-6}
$$

This is equivalent to choosing h and n to satisfy

$$
\begin{aligned}
h & \leq .003873 \\
n=\frac{2}{h} & \geq 516.4
\end{aligned}
$$

Thus $n \geq 517$ will imply (1).

DERIVING THE ERROR FORMULA

There are two stages in deriving the error:
(1) Obtain the error formula for the case of a single subinterval ($n=1$);
(2) Use this to obtain the general error formula given earlier.

For the trapezoidal method with only a single subinterval, we have

$$
\int_{\alpha}^{\alpha+h} f(x) d x-\frac{h}{2}[f(\alpha)+f(\alpha+h)]=-\frac{h^{3}}{12} f^{\prime \prime}(c)
$$

for some c in the interval $[\alpha, \alpha+h]$.

A sketch of the derivation of this error formula is given in the problems.

Recall that the general trapezoidal rule $T_{n}(f)$ was obtained by applying the simple trapezoidal rule to a subdivision of the original interval of integration. Recall defining and writing

$$
\begin{aligned}
& h=\frac{b-a}{n}, \quad x_{j}=a+j h, \quad j=0,1, \ldots, n \\
& I=\int_{x_{0}}^{x_{n}} f(x) d x \\
& =\int_{x_{0}}^{x_{1}} f(x) d x+\int_{x_{1}}^{x_{2}} f(x) d x+\cdots \\
& \quad+\int_{x_{n-1}}^{x_{n}} f(x) d x
\end{aligned}
$$

$$
I \approx \frac{h}{2}\left[f\left(x_{0}\right)+f\left(x_{1}\right)\right]+\frac{h}{2}\left[f\left(x_{1}\right)+f\left(x_{2}\right)\right]
$$

$$
\begin{aligned}
& +\cdots \\
& +\frac{h}{2}\left[f\left(x_{n-2}\right)+f\left(x_{n-1}\right)\right]+\frac{h}{2}\left[f\left(x_{n-1}\right)+f\left(x_{n}\right)\right]
\end{aligned}
$$

Then the error

$$
E_{n}^{T}(f) \equiv \int_{a}^{b} f(x) d x-T_{n}(f)
$$

can be analyzed by adding together the errors over the subintervals $\left[x_{0}, x_{1}\right],\left[x_{1}, x_{2}\right], \ldots,\left[x_{n-1}, x_{n}\right]$. Recall

$$
\int_{\alpha}^{\alpha+h} f(x) d x-\frac{h}{2}[f(\alpha)+f(\alpha+h)]=-\frac{h^{3}}{12} f^{\prime \prime}(c)
$$

Then on $\left[x_{j-1}, x_{j}\right]$,

$$
\int_{x_{j-1}}^{x_{j}} f(x) d x-\frac{h}{2}\left[f\left(x_{j-1}\right)+f\left(x_{j}\right)\right]=-\frac{h^{3}}{12} f^{\prime \prime}\left(\gamma_{j}\right)
$$

with $x_{j-1} \leq \gamma_{j} \leq x_{j}$, but otherwise γ_{j} unknown.
Then combining these errors, we obtain

$$
E_{n}^{T}(f)=-\frac{h^{3}}{12} f^{\prime \prime}\left(\gamma_{1}\right)-\cdots-\frac{h^{3}}{12} f^{\prime \prime}\left(\gamma_{n}\right)
$$

This formula can be further simplified, and we will do so in two ways.

Rewrite this error as

$$
E_{n}^{T}(f)=-\frac{h^{3} n}{12}\left[\frac{f^{\prime \prime}\left(\gamma_{1}\right)+\cdots+f^{\prime \prime}\left(\gamma_{n}\right)}{n}\right]
$$

Denote the quantity inside the brackets by ζ_{n}. This number satisfies

$$
\min _{a \leq x \leq b} f^{\prime \prime}(x) \leq \zeta_{n} \leq \max _{a \leq x \leq b} f^{\prime \prime}(x)
$$

Since $f^{\prime \prime}(x)$ is a continuous function (by original assumption), we have that there must be some number c_{n} in $[a, b]$ for which

$$
f^{\prime \prime}\left(c_{n}\right)=\zeta_{n}
$$

Recall also that $h n=b-a$. Then

$$
\begin{aligned}
E_{n}^{T}(f) & =-\frac{h^{3} n}{12}\left[\frac{f^{\prime \prime}\left(\gamma_{1}\right)+\cdots+f^{\prime \prime}\left(\gamma_{n}\right)}{n}\right] \\
& =-\frac{h^{2}(b-a)}{12} f^{\prime \prime}\left(c_{n}\right)
\end{aligned}
$$

This is the error formula given on the first slide.

AN ERROR ESTIMATE

We now obtain a way to estimate the error $E_{n}^{T}(f)$. Return to the formula

$$
E_{n}^{T}(f)=-\frac{h^{3}}{12} f^{\prime \prime}\left(\gamma_{1}\right)-\cdots-\frac{h^{3}}{12} f^{\prime \prime}\left(\gamma_{n}\right)
$$

and rewrite it as

$$
E_{n}^{T}(f)=-\frac{h^{2}}{12}\left[f^{\prime \prime}\left(\gamma_{1}\right) h+\cdots+f^{\prime \prime}\left(\gamma_{n}\right) h\right]
$$

The quantity

$$
f^{\prime \prime}\left(\gamma_{1}\right) h+\cdots+f^{\prime \prime}\left(\gamma_{n}\right) h
$$

is a Riemann sum for the integral

$$
\int_{a}^{b} f^{\prime \prime}(x) d x=f^{\prime}(b)-f^{\prime}(a)
$$

By this we mean

$$
\lim _{n \rightarrow \infty}\left[f^{\prime \prime}\left(\gamma_{1}\right) h+\cdots+f^{\prime \prime}\left(\gamma_{n}\right) h\right]=\int_{a}^{b} f^{\prime \prime}(x) d x
$$

Thus

$$
f^{\prime \prime}\left(\gamma_{1}\right) h+\cdots+f^{\prime \prime}\left(\gamma_{n}\right) h \approx f^{\prime}(b)-f^{\prime}(a)
$$

for larger values of n. Combining this with the earlier error formula

$$
E_{n}^{T}(f)=-\frac{h^{2}}{12}\left[f^{\prime \prime}\left(\gamma_{1}\right) h+\cdots+f^{\prime \prime}\left(\gamma_{n}\right) h\right]
$$

we have

$$
E_{n}^{T}(f) \approx-\frac{h^{2}}{12}\left[f^{\prime}(b)-f^{\prime}(a)\right] \equiv \widetilde{E}_{n}^{T}(f)
$$

This is a computable estimate of the error in the numerical integration. It is called an asymptotic error estimate.

Example. Consider evaluating

$$
I(f)=\int_{0}^{\pi} e^{x} \cos x d x=-\frac{e^{\pi}+1}{2} \doteq-12.070346
$$

In this case,

$$
\begin{aligned}
f^{\prime}(x) & =e^{x}[\cos x-\sin x] \\
f^{\prime \prime}(x) & =-2 e^{x} \sin x \\
\max _{0 \leq x \leq \pi}\left|f^{\prime \prime}(x)\right| & =\left|f^{\prime \prime}(.75 \pi)\right|=14.921
\end{aligned}
$$

Then

$$
\begin{aligned}
E_{n}^{T}(f) & =-\frac{h^{2}(b-a)}{12} f^{\prime \prime}\left(c_{n}\right) \\
\left|E_{n}^{T}(f)\right| & \leq \frac{h^{2} \pi}{12} \cdot 14.921=3.906 h^{2}
\end{aligned}
$$

Also

$$
\begin{aligned}
\widetilde{E}_{n}^{T}(f) & =-\frac{h^{2}}{12}\left[f^{\prime}(\pi)-f^{\prime}(0)\right] \\
& =\frac{h^{2}}{12}\left[e^{\pi}+1\right] \doteq 2.012 h^{2}
\end{aligned}
$$

In looking at the table (in a separate file on website) for evaluating the integral I by the trapezoidal rule, we see that the error $E_{n}^{T}(f)$ and the error estimate $\tilde{E}_{n}^{T}(f)$ are quite close. Therefore

$$
\begin{aligned}
I(f)-T_{n}(f) & \approx \frac{h^{2}}{12}\left[e^{\pi}+1\right] \\
I(f) & \approx T_{n}(f)+\frac{h^{2}}{12}\left[e^{\pi}+1\right]
\end{aligned}
$$

This last formula is called the corrected trapezoidal rule, and it is illustrated in the second table (on the separate page). We see it gives a much smaller error for essentially the same amount of work; and it converges much more rapidly.

In general,

$$
\begin{aligned}
I(f)-T_{n}(f) & \approx-\frac{h^{2}}{12}\left[f^{\prime}(b)-f^{\prime}(a)\right] \\
I(f) & \approx T_{n}(f)-\frac{h^{2}}{12}\left[f^{\prime}(b)-f^{\prime}(a)\right]
\end{aligned}
$$

This is the corrected trapezoidal rule. It is easy to obtain from the trapezoidal rule, and in most cases, it converges more rapidly than the trapezoidal rule.

SIMPSON'S RULE ERROR FORMULA

Recall the general Simpson's rule

$$
\begin{aligned}
& \int_{a}^{b} f(x) d x \approx S_{n}(f) \equiv \frac{h}{3}\left[f\left(x_{0}\right)+4 f\left(x_{1}\right)+2 f\left(x_{2}\right)\right. \\
& \quad+4 f\left(x_{3}\right)+2 f\left(x_{4}\right)+\cdots \\
& \left.\quad+2 f\left(x_{n-2}\right)+4 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right]
\end{aligned}
$$

For its error, we have

$$
E_{n}^{S}(f) \equiv \int_{a}^{b} f(x) d x-S_{n}(f)=-\frac{h^{4}(b-a)}{180} f^{(4)}\left(c_{n}\right)
$$

for some $a \leq c_{n} \leq b$, with c_{n} otherwise unknown. For an asymptotic error estimate,

$$
\int_{a}^{b} f(x) d x-S_{n}(f) \approx \widetilde{E}_{n}^{S}(f) \equiv-\frac{h^{4}}{180}\left[f^{\prime \prime \prime}(b)-f^{\prime \prime \prime}(a)\right]
$$

DISCUSSION

For Simpson's error formula, both formulas assume that the integrand $f(x)$ has four continuous derivatives on the interval $[a, b]$. What happens when this is not valid? We return later to this question.

Both formulas also say the error should decrease by a factor of around 16 when n is doubled.

Compare these results with those for the trapezoidal rule error formulas:.

$$
\begin{gathered}
E_{n}^{T}(f) \equiv \int_{a}^{b} f(x) d x-T_{n}(f)=-\frac{h^{2}(b-a)}{12} f^{\prime \prime}\left(c_{n}\right) \\
E_{n}^{T}(f) \approx-\frac{h^{2}}{12}\left[f^{\prime}(b)-f^{\prime}(a)\right] \equiv \widetilde{E}_{n}^{T}(f)
\end{gathered}
$$

EXAMPLE

Consider evaluating

$$
I=\int_{0}^{2} \frac{d x}{1+x^{2}}
$$

using Simpson's rule $S_{n}(f)$. How large should n be chosen in order to ensure that

$$
\left|E_{n}^{S}(f)\right| \leq 5 \times 10^{-6}
$$

Begin by noting that

$$
\begin{aligned}
f^{(4)}(x) & =24 \frac{5 x^{4}-10 x^{2}+1}{\left(1+x^{2}\right)^{5}} \\
\max _{0 \leq x \leq 1}\left|f^{(4)}(x)\right| & =f^{(4)}(0)=24
\end{aligned}
$$

Then

$$
\begin{aligned}
E_{n}^{S}(f) & =-\frac{h^{4}(b-a)}{180} f^{(4)}\left(c_{n}\right) \\
\left|E_{n}^{S}(f)\right| & \leq \frac{h^{4} \cdot 2}{180} \cdot 24=\frac{4 h^{4}}{15}
\end{aligned}
$$

Then $\left|E_{n}^{S}(f)\right| \leq 5 \times 10^{-6}$ is true if

$$
\begin{aligned}
\frac{4 h^{4}}{15} & \leq 5 \times 10^{-6} \\
h & \leq .0658 \\
n & \geq 30.39
\end{aligned}
$$

Therefore, choosing $n \geq 32$ will give the desired error bound. Compare this with the earlier trapezoidal example in which $n \geq 517$ was needed.

For the asymptotic error estimate, we have

$$
\begin{gathered}
f^{\prime \prime \prime}(x)=-24 x \frac{x^{2}-1}{\left(1+x^{2}\right)^{4}} \\
\widetilde{E}_{n}^{S}(f) \\
\equiv-\frac{h^{4}}{180}\left[f^{\prime \prime \prime}(2)-f^{\prime \prime \prime}(0)\right] \\
\\
=\frac{h^{4}}{180} \cdot \frac{144}{625}=\frac{4}{3125} h^{4}
\end{gathered}
$$

INTEGRATING $\operatorname{sqrt}(x)$

Consider the numerical approximation of

$$
\int_{0}^{1} \operatorname{sqrt}(x) d x=\frac{2}{3}
$$

In the following table, we give the errors when using both the trapezoidal and Simpson rules.

n	E_{n}^{T}	Ratio	E_{n}^{S}	Ratio
2	$6.311 E-2$		$2.860 E-2$	
4	$2.338 E-2$	2.70	$1.012 E-2$	2.82
8	$8.536 E-3$	2.74	$3.587 E-3$	2.83
16	$3.085 E-3$	2.77	$1.268 E-3$	2.83
32	$1.108 E-3$	2.78	$4.485 E-4$	2.83
64	$3.959 E-4$	2.80	$1.586 E-4$	2.83
128	$1.410 E-4$	2.81	$5.606 E-5$	2.83

The rate of convergence is slower because the function $f(x)=\operatorname{sqrt}(x)$ is not sufficiently differentiable on $[0,1]$. Both methods converge with a rate proportional to $h^{1.5}$.

ASYMPTOTIC ERROR FORMULAS

If we have a numerical integration formula,

$$
\int_{a}^{b} f(x) d x \approx \sum_{j=0}^{n} w_{j} f\left(x_{j}\right)
$$

let $E_{n}(f)$ denote its error,

$$
E_{n}(f)=\int_{a}^{b} f(x) d x-\sum_{j=0}^{n} w_{j} f\left(x_{j}\right)
$$

We say another formula $\widetilde{E}_{n}(f)$ is an asymptotic error formula this numerical integration if it satisfies

$$
\lim _{n \rightarrow \infty} \frac{\widetilde{E}_{n}(f)}{E_{n}(f)}=1
$$

Equivalently,

$$
\lim _{n \rightarrow \infty} \frac{E_{n}(f)-\widetilde{E}_{n}(f)}{E_{n}(f)}=0
$$

These conditions say that $\widetilde{E}_{n}(f)$ looks increasingly like $E_{n}(f)$ as n increases, and thus

$$
E_{n}(f) \approx \widetilde{E}_{n}(f)
$$

Example. For the trapezoidal rule,

$$
E_{n}^{T}(f) \approx \widetilde{E}_{n}^{T}(f) \equiv-\frac{h^{2}}{12}\left[f^{\prime}(b)-f^{\prime}(a)\right]
$$

This assumes $f(x)$ has two continuous derivatives on the interval $[a, b]$.

Example. For Simpson's rule,

$$
E_{n}^{S}(f) \approx \widetilde{E}_{n}^{S}(f) \equiv-\frac{h^{4}}{180}\left[f^{\prime \prime \prime}(b)-f^{\prime \prime \prime}(a)\right]
$$

This assumes $f(x)$ has four continuous derivatives on the interval $[a, b]$.

Note that both of these formulas can be written in an equivalent form as

$$
\widetilde{E}_{n}(f)=\frac{c}{n^{p}}
$$

for appropriate constant c and exponent p. With the trapezoidal rule, $p=2$ and

$$
c=-\frac{(b-a)^{2}}{12}\left[f^{\prime}(b)-f^{\prime}(a)\right]
$$

and for Simpson's rule, $p=4$ with a suitable c.

The formula

$$
\begin{equation*}
\widetilde{E}_{n}(f)=\frac{c}{n^{p}} \tag{2}
\end{equation*}
$$

occurs for many other numerical integration formulas that we have not yet defined or studied. In addition, if we use the trapezoidal or Simpson rules with an integrand $f(x)$ which is not sufficiently differentiable, then (2) may hold with an exponent p that is less than the ideal.
Example. Consider

$$
I=\int_{0}^{1} x^{\beta} d x
$$

in which $-1<\beta<1, \beta \neq 0$. Then the convergence of the trapezoidal rule can be shown to have an asymptotic error formula

$$
\begin{equation*}
E_{n} \approx \widetilde{E}_{n}=\frac{c}{n^{\beta+1}} \tag{3}
\end{equation*}
$$

for some constant c dependent on β. A similar result holds for Simpson's rule, with $-1<\beta<3$, β not an integer. We can actually specify a formula for c; but the formula is often less important than knowing that (2) is valid for some c.

APPLICATION OF ASYMPTOTIC ERROR FORMULAS

Assume we know that an asymptotic error formula

$$
I-I_{n} \approx \frac{c}{n^{p}}
$$

is valid for some numerical integration rule denoted by I_{n}. Initially, assume we know the exponent p. Then imagine calculating both I_{n} and $I_{2 n}$. With $I_{2 n}$, we have

$$
I-I_{2 n} \approx \frac{c}{2^{p} n^{p}}
$$

This leads to

$$
\begin{aligned}
I-I_{n} & \approx 2^{p}\left[I-I_{2 n}\right] \\
I & \approx \frac{2^{p} I_{2 n}-I_{n}}{2^{p}-1}=I_{2 n}+\frac{I_{2 n}-I_{n}}{2^{p}-1}
\end{aligned}
$$

The formula

$$
\begin{equation*}
I \approx I_{2 n}+\frac{I_{2 n}-I_{n}}{2^{p}-1} \tag{4}
\end{equation*}
$$

is called Richardson's extrapolation formula.

Example. With the trapezoidal rule and with the integrand $f(x)$ having two continuous derivatives,

$$
I \approx T_{2 n}+\frac{1}{3}\left[T_{2 n}-T_{n}\right]
$$

Example. With Simpson's rule and with the integrand $f(x)$ having four continuous derivatives,

$$
I \approx S_{2 n}+\frac{1}{15}\left[S_{2 n}-S_{n}\right]
$$

We can also use the formula (2) to obtain error estimation formulas:

$$
\begin{equation*}
I-I_{2 n} \approx \frac{I_{2 n}-I_{n}}{2^{p}-1} \tag{5}
\end{equation*}
$$

This is called Richardson's error estimate. For example, with the trapezoidal rule,

$$
I-T_{2 n} \approx \frac{1}{3}\left[T_{2 n}-T_{n}\right]
$$

These formulas are illustrated for the trapezoidal rule in an accompanying table, for

$$
\int_{0}^{\pi} e^{x} \cos x d x=-\frac{e^{\pi}+1}{2} \doteq-12.07034632
$$

AITKEN EXTRAPOLATION

In this case, we again assume

$$
I-I_{n} \approx \frac{c}{n^{p}}
$$

But in contrast to previously, we do not know either c or p. Imagine computing $I_{n}, I_{2 n}$, and $I_{4 n}$. Then

$$
\begin{aligned}
I-I_{n} & \approx \frac{c}{n^{p}} \\
I-I_{2 n} & \approx \frac{c}{2^{p} n^{p}} \\
I-I_{4 n} & \approx \frac{c}{4 n^{p} p}
\end{aligned}
$$

We can directly try to estimate I. Dividing

$$
\frac{I-I_{n}}{I-I_{2 n}} \approx 2^{p} \approx \frac{I-I_{2 n}}{I-I_{4 n}}
$$

Solving for I, we obtain

$$
\begin{aligned}
\left(I-I_{2 n}\right)^{2} & \approx\left(I-I_{n}\right)\left(I-I_{4 n}\right) \\
I\left(I_{n}+I_{4 n}-2 I_{2 n}\right) & \approx I_{n} I_{4 n}-I_{2 n}^{2} \\
I & \approx \frac{I_{n} I_{4 n}-I_{2 n}^{2}}{I_{n}+I_{4 n}-2 I_{2 n}}
\end{aligned}
$$

This can be improved computationally, to avoid loss of significance errors.

$$
\begin{aligned}
I & \approx I_{4 n}+\left[\frac{I_{n} I_{4 n}-I_{2 n}^{2}}{I_{n}+I_{4 n}-2 I_{2 n}}-I_{4 n}\right] \\
& =I_{4 n}-\frac{\left(I_{4 n}-I_{2 n}\right)^{2}}{\left(I_{4 n}-I_{2 n}\right)-\left(I_{2 n}-I_{n}\right)}
\end{aligned}
$$

This is called Aitken's extrapolation formula.

To estimate p, we use

$$
\frac{I_{2 n}-I_{n}}{I_{4 n}-I_{2 n}} \approx 2^{p}
$$

To see this, write

$$
\frac{I_{2 n}-I_{n}}{I_{4 n}-I_{2 n}}=\frac{\left(I-I_{n}\right)-\left(I-I_{2 n}\right)}{\left(I-I_{2 n}\right)-\left(I-I_{4 n}\right)}
$$

Then substitute from the following and simplify:

$$
\begin{aligned}
I-I_{n} & \approx \frac{c}{n^{p}} \\
I-I_{2 n} & \approx \frac{c}{2^{p} n^{p}} \\
I-I_{4 n} & \approx \frac{c}{4^{p} n^{p}}
\end{aligned}
$$

Example. Consider the following table of numerical integrals. What is its order of convergence?

n	I_{n}	$I_{n}-I_{\frac{1}{2} n}$	Ratio
2	.28451779686		
4	.28559254576	$1.075 E-3$	
8	.28570248748	$1.099 E-4$	9.78
16	.28571317731	$1.069 E-5$	10.28
32	.28571418363	$1.006 E-6$	10.62
64	.28571427643	$9.280 E-8$	10.84

It appears

$$
2^{p} \doteq 10.84, \quad p \doteq \log _{2} 10.84=3.44
$$

We could now combine this with Richardson's error formula to estimate the error:

$$
I-I_{n} \approx \frac{1}{2^{p}-1}\left[I_{n}-I_{\frac{1}{2} n}\right]
$$

For example,

$$
I-I_{64} \approx \frac{1}{9.84}[9.280 E-8]=9.43 E-9
$$

PERIODIC FUNCTIONS

A function $f(x)$ is periodic if the following condition is satisfied. There is a smallest real number $\tau>0$ for which

$$
\begin{equation*}
f(x+\tau)=f(x), \quad-\infty<x<\infty \tag{6}
\end{equation*}
$$

The number τ is called the period of the function $f(x)$. The constant function $f(x) \equiv 1$ is also considered periodic, but it satisfies this condition with any $\tau>0$. Basically, a periodic function is one which repeats itself over intervals of length τ.

The condition (6) implies

$$
\begin{equation*}
f^{(m)}(x+\tau)=f^{(m)}(x), \quad-\infty<x<\infty \tag{7}
\end{equation*}
$$

for the $m^{\text {th }}$-derivative of $f(x)$, provided there is such a derivative. Thus the derivatives are also periodic.

Periodic functions occur very frequently in applications of mathematics, reflecting the periodicity of many phenomena in the physical world.

PERIODIC INTEGRANDS

Consider the special class of integrals

$$
I(f)=\int_{a}^{b} f(x) d x
$$

in which $f(x)$ is periodic, with $b-a$ an integer multiple of the period τ for $f(x)$. In this case, the performance of the trapezoidal rule and other numerical integration rules is much better than that predicted by earlier error formulas.

To hint at this improved performance, recall

$$
\int_{a}^{b} f(x) d x-T_{n}(f) \approx \widetilde{E}_{n}(f) \equiv-\frac{h^{2}}{12}\left[f^{\prime}(b)-f^{\prime}(a)\right]
$$

With our assumption on the periodicity of $f(x)$, we have

$$
f(a)=f(b), \quad f^{\prime}(a)=f^{\prime}(b)
$$

Therefore,

$$
\widetilde{E}_{n}(f)=0
$$

and we should expect improved performance in the convergence behaviour of the trapezoidal sums $T_{n}(f)$.

If in addition to being periodic on $[a, b]$, the integrand $f(x)$ also has m continous derivatives, then it can be shown that

$$
I(f)-T_{n}(f)=\frac{c}{n^{m}}+\text { smaller terms }
$$

By "smaller terms", we mean terms which decrease to zero more rapidly than n^{-m}.

Thus if $f(x)$ is periodic with $b-a$ an integer multiple of the period τ for $f(x)$, and if $f(x)$ is infinitely differentiable, then the error $I-T_{n}$ decreases to zero more rapidly than n^{-m} for any $m>0$. For periodic integrands, the trapezoidal rule is an optimal numerical integration method.

Example. Consider evaluating

$$
I=\int_{0}^{2 \pi} \frac{\sin x d x}{1+e^{\sin x}}
$$

Using the trapezoidal rule, we have the results in the following table. In this case, the formulas based on Richardson extrapolation are no longer valid.

n	T_{n}	$T_{n}-T_{\frac{1}{2} n}$
2	0.0	
4	-0.72589193317292	$-7.259 E-1$
8	-0.7400613121583	$-1.417 E-2$
16	-0.74006942337672	$-8.111 E-6$
32	-0.74006942337946	$-2.746 E-12$
64	-0.74006942337946	0.0

