
TRAPEZOIDAL METHOD

ERROR FORMULA

Theorem Let f(x) have two continuous derivatives on

the interval a ≤ x ≤ b. Then

ET
n (f) ≡

Z b

a
f(x) dx− Tn(f) = −h

2 (b− a)

12
f 00 (cn)

for some cn in the interval [a, b].

Later I will say something about the proof of this re-

sult, as it leads to some other useful formulas for the

error.

The above formula says that the error decreases in

a manner that is roughly proportional to h2. Thus

doubling n (and halving h) should cause the error to

decrease by a factor of approximately 4. This is what

we observed with a past example from the preceding

section.



Example. Consider evaluating

I =
Z 2
0

dx

1 + x2

using the trapezoidal method Tn(f). How large should

n be chosen in order to ensure that¯̄̄
ET
n (f)

¯̄̄
≤ 5× 10−6

We begin by calculating the derivatives:

f 0(x) = −2x³
1 + x2

´2, f 00(x) = −2 + 6x2³
1 + x2

´3
From a graph of f 00(x),

max
0≤x≤2

¯̄̄
f 00(x)

¯̄̄
= 2

Recall that b− a = 2. Therefore,

ET
n (f) = −h

2 (b− a)

12
f 00 (cn)¯̄̄

ET
n (f)

¯̄̄
≤ h2 (2)

12
· 2 = h2

3



ET
n (f) = −h

2 (b− a)

12
f 00 (cn)¯̄̄

ET
n (f)

¯̄̄
≤ h22

12
· 2 = h2

3

We bound
¯̄
f 00 (cn)

¯̄
since we do not know cn, and

therefore we must assume the worst possible case, that

which makes the error formula largest. That is what

has been done above.

When do we have¯̄̄
ET
n (f)

¯̄̄
≤ 5× 10−6 (1)

To ensure this, we choose h so small that

h2

3
≤ 5× 10−6

This is equivalent to choosing h and n to satisfy

h ≤ .003873

n =
2

h
≥ 516.4

Thus n ≥ 517 will imply (1).



DERIVING THE ERROR FORMULA

There are two stages in deriving the error:

(1) Obtain the error formula for the case of a single

subinterval (n = 1);

(2) Use this to obtain the general error formula given

earlier.

For the trapezoidal method with only a single subin-

terval, we haveZ α+h

α
f(x) dx− h

2
[f(α) + f(α+ h)] = −h

3

12
f 00(c)

for some c in the interval [α,α+ h].

A sketch of the derivation of this error formula is given

in the problems.



Recall that the general trapezoidal rule Tn(f) was ob-

tained by applying the simple trapezoidal rule to a sub-

division of the original interval of integration. Recall

defining and writing

h =
b− a

n
, xj = a+ j h, j = 0, 1, ..., n

I =

xnZ
x0

f(x) dx

=

x1Z
x0

f(x) dx+

x2Z
x1

f(x) dx+ · · ·

+

xnZ
xn−1

f(x) dx

I ≈ h
2 [f(x0) + f(x1)] +

h
2 [f(x1) + f(x2)]

+ · · ·
+h
2 [f(xn−2) + f(xn−1)] + h

2 [f(xn−1) + f(xn)]



Then the error

ET
n (f) ≡

Z b

a
f(x) dx− Tn(f)

can be analyzed by adding together the errors over the

subintervals [x0, x1], [x1, x2], ..., [xn−1, xn]. RecallZ α+h

α
f(x) dx− h

2
[f(α) + f(α+ h)] = −h

3

12
f 00(c)

Then on [xj−1, xj],
xjZ
xj−1

f(x) dx− h

2

h
f(xj−1) + f(xj)

i
= −h

3

12
f 00(γj)

with xj−1 ≤ γj ≤ xj, but otherwise γj unknown.

Then combining these errors, we obtain

ET
n (f) = −

h3

12
f 00(γ1)− · · ·−

h3

12
f 00(γn)

This formula can be further simplified, and we will do

so in two ways.



Rewrite this error as

ET
n (f) = −

h3n

12

"
f 00(γ1) + · · ·+ f 00(γn)

n

#
Denote the quantity inside the brackets by ζn. This

number satisfies

min
a≤x≤b f

00(x) ≤ ζn ≤ max
a≤x≤b f

00(x)

Since f 00(x) is a continuous function (by original as-
sumption), we have that there must be some number

cn in [a, b] for which

f 00(cn) = ζn

Recall also that hn = b− a. Then

ET
n (f) = −h

3n

12

"
f 00(γ1) + · · ·+ f 00(γn)

n

#

= −h
2 (b− a)

12
f 00 (cn)

This is the error formula given on the first slide.



AN ERROR ESTIMATE

We now obtain a way to estimate the error ET
n (f).

Return to the formula

ET
n (f) = −

h3

12
f 00(γ1)− · · ·−

h3

12
f 00(γn)

and rewrite it as

ET
n (f) = −

h2

12

h
f 00(γ1)h+ · · ·+ f 00(γn)h

i
The quantity

f 00(γ1)h+ · · ·+ f 00(γn)h

is a Riemann sum for the integralZ b

a
f 00(x) dx = f 0(b)− f 0(a)

By this we mean

lim
n→∞

h
f 00(γ1)h+ · · ·+ f 00(γn)h

i
=
Z b

a
f 00(x) dx



Thus

f 00(γ1)h+ · · ·+ f 00(γn)h ≈ f 0(b)− f 0(a)

for larger values of n. Combining this with the earlier

error formula

ET
n (f) = −

h2

12

h
f 00(γ1)h+ · · ·+ f 00(γn)h

i
we have

ET
n (f) ≈ −

h2

12

h
f 0(b)− f 0(a)

i
≡ eET

n (f)

This is a computable estimate of the error in the nu-

merical integration. It is called an asymptotic error

estimate.



Example. Consider evaluating

I(f) =
Z π

0
ex cosxdx = −e

π + 1

2

.
= −12.070346

In this case,

f 0(x) = ex [cosx− sinx]
f 00(x) = −2ex sinx

max
0≤x≤π

¯̄
f 00(x)

¯̄
=

¯̄
f 00 (.75π)

¯̄
= 14. 921

Then

ET
n (f) = −h

2 (b− a)

12
f 00 (cn)¯̄̄

ET
n (f)

¯̄̄
≤ h2π

12
· 14.921 = 3.906h2

Also

eET
n (f) = −h

2

12

£
f 0(π)− f 0(0)

¤
=

h2

12
[eπ + 1]

.
= 2.012h2



In looking at the table (in a separate file on website)
for evaluating the integral I by the trapezoidal rule,
we see that the error ET

n (f) and the error estimateeET
n (f) are quite close. Therefore

I(f)− Tn(f) ≈ h2

12
[eπ + 1]

I(f) ≈ Tn(f) +
h2

12
[eπ + 1]

This last formula is called the corrected trapezoidal
rule, and it is illustrated in the second table (on the
separate page). We see it gives a much smaller er-
ror for essentially the same amount of work; and it
converges much more rapidly.

In general,

I(f)− Tn(f) ≈ −h
2

12

£
f 0(b)− f 0(a)

¤
I(f) ≈ Tn(f)− h2

12

£
f 0(b)− f 0(a)

¤
This is the corrected trapezoidal rule. It is easy to
obtain from the trapezoidal rule, and in most cases,
it converges more rapidly than the trapezoidal rule.



SIMPSON’S RULE ERROR FORMULA

Recall the general Simpson’s ruleZ b

a
f(x) dx ≈ Sn(f) ≡ h

3 [f(x0) + 4f(x1) + 2f(x2)

+4f(x3) + 2f(x4) + · · ·
+2f(xn−2) + 4f(xn−1) + f(xn)]

For its error, we have

ES
n(f) ≡

bZ
a

f(x) dx− Sn(f) = −h
4 (b− a)

180
f (4)(cn)

for some a ≤ cn ≤ b, with cn otherwise unknown. For

an asymptotic error estimate,

bZ
a

f(x) dx−Sn(f) ≈ eES
n (f) ≡ −

h4

180

h
f 000(b)− f 000(a)

i



DISCUSSION

For Simpson’s error formula, both formulas assume

that the integrand f(x) has four continuous deriva-

tives on the interval [a, b]. What happens when this

is not valid? We return later to this question.

Both formulas also say the error should decrease by a

factor of around 16 when n is doubled.

Compare these results with those for the trapezoidal

rule error formulas:.

ET
n (f) ≡

Z b

a
f(x) dx− Tn(f) = −h

2 (b− a)

12
f 00 (cn)

ET
n (f) ≈ −

h2

12

h
f 0(b)− f 0(a)

i
≡ eET

n (f)



EXAMPLE

Consider evaluating

I =
Z 2
0

dx

1 + x2

using Simpson’s rule Sn(f). How large should n be

chosen in order to ensure that¯̄̄
ES
n(f)

¯̄̄
≤ 5× 10−6

Begin by noting that

f (4)(x) = 24
5x4 − 10x2 + 1³

1 + x2
´5

max
0≤x≤1

¯̄̄
f (4)(x)

¯̄̄
= f (4)(0) = 24

Then

ES
n(f) = −h

4 (b− a)

180
f (4)(cn)¯̄̄

ES
n(f)

¯̄̄
≤ h4 · 2

180
· 24 = 4h4

15



Then
¯̄̄
ES
n(f)

¯̄̄
≤ 5× 10−6 is true if

4h4

15
≤ 5× 10−6

h ≤ .0658
n ≥ 30.39

Therefore, choosing n ≥ 32 will give the desired er-

ror bound. Compare this with the earlier trapezoidal

example in which n ≥ 517 was needed.

For the asymptotic error estimate, we have

f 000(x) = −24x x2 − 1³
1 + x2

´4
eES
n (f) ≡ − h4

180

£
f 000(2)− f 000(0)

¤
=

h4

180
· 144
625

=
4

3125
h4



INTEGRATING sqrt(x)

Consider the numerical approximation ofZ 1
0
sqrt(x) dx =

2

3

In the following table, we give the errors when using

both the trapezoidal and Simpson rules.

n ET
n Ratio ES

n Ratio
2 6.311E − 2 2.860E − 2
4 2.338E − 2 2.70 1.012E − 2 2.82
8 8.536E − 3 2.74 3.587E − 3 2.83
16 3.085E − 3 2.77 1.268E − 3 2.83
32 1.108E − 3 2.78 4.485E − 4 2.83
64 3.959E − 4 2.80 1.586E − 4 2.83
128 1.410E − 4 2.81 5.606E − 5 2.83

The rate of convergence is slower because the func-

tion f(x) =sqrt(x) is not sufficiently differentiable on

[0, 1]. Both methods converge with a rate propor-

tional to h1.5.



ASYMPTOTIC ERROR FORMULAS

If we have a numerical integration formula,Z b

a
f(x) dx ≈

nX
j=0

wjf(xj)

let En(f) denote its error,

En(f) =
Z b

a
f(x) dx−

nX
j=0

wjf(xj)

We say another formula eEn(f) is an asymptotic error
formula this numerical integration if it satisfies

lim
n→∞

eEn(f)

En(f)
= 1

Equivalently,

lim
n→∞

En(f)− eEn(f)

En(f)
= 0

These conditions say that eEn(f) looks increasingly
like En(f) as n increases, and thus

En(f) ≈ eEn(f)



Example. For the trapezoidal rule,

ET
n (f) ≈ eET

n (f) ≡ −
h2

12

h
f 0(b)− f 0(a)

i
This assumes f(x) has two continuous derivatives on

the interval [a, b].

Example. For Simpson’s rule,

ES
n(f) ≈ eES

n(f) ≡ −
h4

180

h
f 000(b)− f 000(a)

i
This assumes f(x) has four continuous derivatives on

the interval [a, b].

Note that both of these formulas can be written in an

equivalent form as

eEn(f) =
c

np

for appropriate constant c and exponent p. With the

trapezoidal rule, p = 2 and

c = −(b− a)2

12

h
f 0(b)− f 0(a)

i
and for Simpson’s rule, p = 4 with a suitable c.



The formula eEn(f) =
c

np
(2)

occurs for many other numerical integration formulas

that we have not yet defined or studied. In addition,

if we use the trapezoidal or Simpson rules with an

integrand f(x) which is not sufficiently differentiable,

then (2) may hold with an exponent p that is less than

the ideal.

Example. Consider

I =
Z 1
0
xβ dx

in which −1 < β < 1, β 6= 0. Then the conver-

gence of the trapezoidal rule can be shown to have an

asymptotic error formula

En ≈ eEn =
c

nβ+1
(3)

for some constant c dependent on β. A similar result

holds for Simpson’s rule, with −1 < β < 3, β not an

integer. We can actually specify a formula for c; but

the formula is often less important than knowing that

(2) is valid for some c.



APPLICATION OF ASYMPTOTIC

ERROR FORMULAS

Assume we know that an asymptotic error formula

I − In ≈ c

np

is valid for some numerical integration rule denoted by

In. Initially, assume we know the exponent p. Then

imagine calculating both In and I2n. With I2n, we

have

I − I2n ≈
c

2pnp

This leads to

I − In ≈ 2p [I − I2n]

I ≈ 2pI2n − In

2p − 1 = I2n +
I2n − In

2p − 1
The formula

I ≈ I2n +
I2n − In

2p − 1 (4)

is called Richardson’s extrapolation formula.



Example. With the trapezoidal rule and with the in-
tegrand f(x) having two continuous derivatives,

I ≈ T2n +
1

3
[T2n − Tn]

Example. With Simpson’s rule and with the integrand
f(x) having four continuous derivatives,

I ≈ S2n +
1

15
[S2n − Sn]

We can also use the formula (2) to obtain error esti-

mation formulas:

I − I2n ≈
I2n − In

2p − 1 (5)

This is called Richardson’s error estimate. For exam-

ple, with the trapezoidal rule,

I − T2n ≈
1

3
[T2n − Tn]

These formulas are illustrated for the trapezoidal rule

in an accompanying table, forZ π

0
ex cosxdx = −e

π + 1

2

.
= −12.07034632



AITKEN EXTRAPOLATION

In this case, we again assume

I − In ≈ c

np

But in contrast to previously, we do not know either

c or p. Imagine computing In, I2n, and I4n. Then

I − In ≈ c

np

I − I2n ≈ c

2pnp

I − I4n ≈ c

4pnp

We can directly try to estimate I. Dividing

I − In

I − I2n
≈ 2p ≈ I − I2n

I − I4n
Solving for I, we obtain

(I − I2n)
2 ≈ (I − In) (I − I4n)

I (In + I4n − 2I2n) ≈ InI4n − I22n

I ≈ InI4n − I22n
In + I4n − 2I2n



This can be improved computationally, to avoid loss

of significance errors.

I ≈ I4n +

"
InI4n − I22n

In + I4n − 2I2n
− I4n

#

= I4n −
(I4n − I2n)

2

(I4n − I2n)− (I2n − In)

This is called Aitken’s extrapolation formula.

To estimate p, we use

I2n − In

I4n − I2n
≈ 2p

To see this, write

I2n − In

I4n − I2n
=
(I − In)− (I − I2n)

(I − I2n)− (I − I4n)

Then substitute from the following and simplify:

I − In ≈ c

np

I − I2n ≈ c

2pnp

I − I4n ≈ c

4pnp



Example. Consider the following table of numerical

integrals. What is its order of convergence?

n In In − I1
2n

Ratio

2 .28451779686
4 .28559254576 1.075E − 3
8 .28570248748 1.099E − 4 9.78
16 .28571317731 1.069E − 5 10.28
32 .28571418363 1.006E − 6 10.62
64 .28571427643 9.280E − 8 10.84

It appears

2p
.
= 10.84, p

.
= log2 10.84 = 3.44

We could now combine this with Richardson’s error

formula to estimate the error:

I − In ≈ 1

2p − 1
·
In − I1

2n

¸
For example,

I − I64 ≈
1

9.84
[9.280E − 8] = 9.43E − 9



PERIODIC FUNCTIONS

A function f(x) is periodic if the following condition

is satisfied. There is a smallest real number τ > 0 for

which

f(x+ τ) = f(x), −∞ < x <∞ (6)

The number τ is called the period of the function

f(x). The constant function f(x) ≡ 1 is also consid-
ered periodic, but it satisfies this condition with any

τ > 0. Basically, a periodic function is one which

repeats itself over intervals of length τ .

The condition (6) implies

f (m)(x+ τ) = f (m)(x), −∞ < x <∞ (7)

for the mth-derivative of f(x), provided there is such

a derivative. Thus the derivatives are also periodic.

Periodic functions occur very frequently in applica-

tions of mathematics, reflecting the periodicity of many

phenomena in the physical world.



PERIODIC INTEGRANDS

Consider the special class of integrals

I(f) =
Z b

a
f(x) dx

in which f(x) is periodic, with b−a an integer multiple
of the period τ for f(x). In this case, the performance

of the trapezoidal rule and other numerical integration

rules is much better than that predicted by earlier error

formulas.

To hint at this improved performance, recallZ b

a
f(x) dx− Tn(f) ≈ eEn(f) ≡ −h

2

12

h
f 0(b)− f 0(a)

i
With our assumption on the periodicity of f(x), we

have

f(a) = f(b), f 0(a) = f 0(b)

Therefore, eEn(f) = 0



and we should expect improved performance in the

convergence behaviour of the trapezoidal sums Tn(f).

If in addition to being periodic on [a, b], the integrand

f(x) also has m continous derivatives, then it can be

shown that

I(f)− Tn(f) =
c

nm
+ smaller terms

By “smaller terms”, we mean terms which decrease

to zero more rapidly than n−m.

Thus if f(x) is periodic with b−a an integer multiple

of the period τ for f(x), and if f(x) is infinitely differ-

entiable, then the error I−Tn decreases to zero more

rapidly than n−m for any m > 0. For periodic inte-

grands, the trapezoidal rule is an optimal numerical

integration method.



Example. Consider evaluating

I =
Z 2π
0

sinxdx

1 + esinx

Using the trapezoidal rule, we have the results in the

following table. In this case, the formulas based on

Richardson extrapolation are no longer valid.

n Tn Tn − T1
2n

2 0.0
4 −0.72589193317292 −7.259E − 1
8 −0.74006131211583 −1.417E − 2
16 −0.74006942337672 −8.111E − 6
32 −0.74006942337946 −2.746E − 12
64 −0.74006942337946 0.0


