
NUMERICAL INTEGRATION

How do you evaluate

I =
Z b

a
f(x) dx

From calculus, if F (x) is an antiderivative of f(x),

then

I =
Z b

a
f(x) dx = F (x)|ba = F (b)− F (a)

However, in practice most integrals cannot be evalu-

ated by this means. And even when this can work, an

approximate numerical method may be much simpler

and easier to use. For example, the integrand inZ 1
0

dx

1 + x5

has an extremely complicated antiderivative; and it is

easier to evaluate the integral by approximate means.

Try evaluating this integral with Maple or Mathemat-

ica.



NUMERICAL INTEGRATION
A GENERAL FRAMEWORK

Returning to a lesson used earlier with rootfinding:
If you cannot solve a problem, then replace it with a
“near-by” problem that you can solve.
In our case, we want to evaluate

I =
Z b

a
f(x) dx

To do so, many of the numerical schemes are based
on choosing approximates of f(x). Calling one suchef(x), use

I ≈
Z b

a

ef(x) dx ≡ eI
What is the error?

E = I − eI = Z b

a

h
f(x)− ef(x)i dx

|E| ≤
Z b

a

¯̄̄
f(x)− ef(x)¯̄̄ dx

≤ (b− a)
°°°f − ef°°°∞°°°f − ef°°°∞ ≡ max

a≤x≤b
¯̄̄
f(x)− ef(x)¯̄̄



We also want to choose the approximates ef(x) of a
form we can integrate directly and easily. Examples

are polynomials, trig functions, piecewise polynomials,

and others.

If we use polynomial approximations, then how do we

choose them. At this point, we have two choices:

1. Taylor polynomials approximating f(x)

2. Interpolatory polynomials approximating f(x)



EXAMPLE

Consider evaluating

I =
Z 1
0
ex
2
dx

Use

et = 1 + t+ 1
2!t
2 + · · ·+ 1

n!t
n + 1

(n+1)!
tn+1ect

ex
2
= 1 + x2 + 1

2!x
4 + · · ·+ 1

n!x
2n + 1

(n+1)!
x2n+2edx

with 0 ≤ dx ≤ x2. Then

I =
Z 1
0

h
1 + x2 + 1

2!x
4 + · · ·+ 1

n!x
2n
i
dx

+ 1
(n+1)!

Z 1
0

h
x2n+2edx

i
dx

Taking n = 3, we have

I = 1 + 1
3 +

1
10 +

1
42 +E = 1.4571 +E

0 < E ≤ e
24

Z 1
0

h
x8
i
dx = e

216 = .0126



USING INTERPOLATORY POLYNOMIALS

In spite of the simplicity of the above example, it is

generally more difficult to do numerical integration by

constructing Taylor polynomial approximations than

by constructing polynomial interpolates. We therefore

construct the function ef inZ b

a
f(x) dx ≈

Z b

a

ef(x) dx
by means of interpolation.

Initially, we consider only the case in which the in-

terpolation is based on interpolation at evenly spaced

node points.



LINEAR INTERPOLATION

The linear interpolant to f(x), interpolating at a and

b, is given by

P1(x) =
(b− x) f(a) + (x− a) f(b)

b− a

Using the linear interpolant

P1(x) =
(b− x) f(a) + (x− a) f(b)

b− a

we obtain the approximationZ b

a
f(x) dx ≈

Z b

a
P1(x) dx

= 1
2 (b− a) [f(a) + f(b)] ≡ T1(f)

The rule
bZ
a

f(x) dx ≈ T1(f)

is called the trapezoidal rule.



x

y

a b

y=f(x)

y=p1(x)

Illustrating I ≈ T1(f)

Example.Z π/2

0
sinxdx ≈ π

4

h
sin 0 + sin

³
π
2

´i
= π

4
.
= .785398

Error = .215



HOW TO OBTAIN GREATER ACCURACY?

How do we improve our estimate of the integral

I =
Z b

a
f(x) dx

One direction is to increase the degree of the approxi-
mation, moving next to a quadratic interpolating poly-
nomial for f(x). We first look at an alternative.

Instead of using the trapezoidal rule on the original
interval [a, b], apply it to integrals of f(x) over smaller
subintervals. For example:

I =
Z c

a
f(x) dx+

Z b

c
f(x) dx, c = b+a

2

≈ c−a
2 [f(a) + f(c)] + b−c

2 [f(c) + f(b)]

= h
2 [f(a) + 2f(c) + f(b)] ≡ T2(f), h = b−a

2

Example.Z π/2

0
sinxdx ≈ π

8

h
sin 0 + 2 sin

³
π
4

´
+ sin

³
π
2

´i
.
= .948059

Error = .0519



x

y

a=x0 b=x3x1 x2

y=f(x)

Illustrating I ≈ T3(f)



THE TRAPEZOIDAL RULE

We can continue as above by dividing [a, b] into even

smaller subintervals and applying

βZ
α

f(x) dx ≈ β − α

2
[f(α) + f(β)] , (∗)

on each of the smaller subintervals. Begin by intro-

ducing a positive integer n ≥ 1,

h =
b− a

n
, xj = a+ j h, j = 0, 1, ..., n

Then

I =
Z xn

x0
f(x) dx

=
Z x1

x0
f(x) dx+

Z x2

x1
f(x) dx+ · · ·+

Z xn

xn−1
f(x) dx

Use [α, β] = [x0, x1], [x1, x2], ..., [xn−1, xn], for each
of which the subinterval has length h.



Then applying

βZ
α

f(x) dx ≈ β − α

2
[f(α) + f(β)]

we have

I ≈ h
2 [f(x0) + f(x1)] +

h
2 [f(x1) + f(x2)]

+ · · ·
+h
2 [f(xn−2) + f(xn−1)] + h

2 [f(xn−1) + f(xn)]

Simplifying,

I ≈ h
·
1

2
f(a) + f(x1) + · · ·+ f(xn−1) +

1

2
f(b)

¸
≡ Tn(f)

This is called the “composite trapezoidal rule”, or

more simply, the trapezoidal rule.



Example. Again integrate sinx over
h
0, π2

i
. Then we

have

n Tn(f) Error Ratio
1 .785398163 2.15E−1
2 .948059449 5.19E−2 4.13
4 .987115801 1.29E−2 4.03
8 .996785172 3.21E−3 4.01
16 .999196680 8.03E−4 4.00
32 .999799194 2.01E−4 4.00
64 .999949800 5.02E−5 4.00
128 .999987450 1.26E−5 4.00
256 .999996863 3.14E−6 4.00

Note that the errors are decreasing by a constant fac-

tor of 4. Why do we always double n?



USING QUADRATIC INTERPOLATION

We want to approximate I =
R b
a f(x) dx using quadratic

interpolation of f(x). Interpolate f(x) at the points

{a, c, b}, with c = 1
2 (a+ b). Also let h = 1

2 (b− a).

The quadratic interpolating polynomial is given by

P2(x) =
(x− c) (x− b)

2h2
f(a) +

(x− a) (x− b)

−h2 f(c)

+
(x− a) (x− c)

2h2
f(b)

Replacing f(x) by P2(x), we obtain the approximationZ b

a
f(x) dx ≈

Z b

a
P2(x) dx

= h
3 [f(a) + 4f(c) + f(b)] ≡ S2(f)

This is called Simpson’s rule.



x

y

a b(a+b)/2

y=f(x)

Illustration of I ≈ S2(f)

Example.Z π/2

0
sinxdx ≈ π/2

3

h
sin 0 + 4 sin

³
π
4

´
+ sin

³
π
2

´i
.
= 1.00227987749221

Error = −0.00228



SIMPSON’S RULE

As with the trapezoidal rule, we can apply Simpson’s

rule on smaller subdivisions in order to obtain better

accuracy in approximating

I =
Z b

a
f(x) dx

Again, Simpson’s rule is given byZ β

α
f(x) dx ≈ δ

3
[f(α) + 4f(γ) + f(β)] , γ =

α+ β

2

and δ = 1
2 (β − α).

Let n be a positive even integer, and

h =
b− a

n
, xj = a+ j h, j = 0, 1, ..., n

Then write

I =
Z xn

x0
f(x) dx

=
Z x2

x0
f(x) dx+

Z x4

x2
f(x) dx+ · · ·+

Z xn

xn−2
f(x) dx



ApplyZ β

α
f(x) dx ≈ δ

3
[f(α) + 4f(γ) + f(β)] , γ =

α+ β

2

to each of these subintegrals, with

[α, β] = [x0, x2] , [x2, x4] , ..., [xn−2, xn]

In all cases, 12 (β − α) = h. Then

I ≈ h
3 [f(x0) + 4f(x1) + f(x2)]

+h
3 [f(x2) + 4f(x3) + f(x4)]

+ · · ·
+h
3 [f(xn−4) + 4f(xn−3) + f(xn−2)]

+h
3 [f(xn−2) + 4f(xn−1) + f(xn)]

This can be simplified toZ b

a
f(x) dx ≈ Sn(f) ≡ h

3 [f(x0) + 4f(x1)

+2f(x2) + 4f(x3) + 2f(x4)

+ · · ·+ 2f(xn−2) + 4f(xn−1) + f(xn)]

This is called the “composite Simpson’s rule” or more

simply, .Simpson’s rule



EXAMPLE

Approximate
Z π/2

0
sinxdx. The Simpson rule results

are as follows.

n Sn(f) Error Ratio
2 1.00227987749221 −2.28E−3
4 1.00013458497419 −1.35E−4 16.94
8 1.00000829552397 −8.30E−6 16.22
16 1.00000051668471 −5.17E−7 16.06
32 1.00000003226500 −3.23E−8 16.01
64 1.00000000201613 −2.02E−9 16.00
128 1.00000000012600 −1.26E−10 16.00
256 1.00000000000788 −7.88E−12 16.00
512 1.00000000000049 −4.92E−13 15.99

Note that the ratios of successive errors have con-

verged to 16. Why? Also compare this table with

that for the trapezoidal rule. For example,

I − T4 = 1.29E − 2
I − S4 = −1.35E − 4



There is a great deal to be learned by doing numbers

of examples. For example, are the ratios of conver-

gence for our numerical examples typical of the trape-

zoidal and Simpson rules? Several of these are given

on pages 188 (for trapezoidal rule) and 192 (for Simp-

son’s rule). They are for the integrals

I(1) =
Z 1
0
e−x2dx .

= .74682413281234

I(2) =
Z 4
0

dx

1 + x2
= arctan 4

I(3) =
Z 2π
0

dx

2 + cosx
=

2π

sqrt(3)

Look carefully at those tables.


