LEAST SQUARES APPROXIMATION

Another approach to approximating a function $f(x)$ on an interval $a \leq x \leq b$ is to seek an approximation $p(x)$ with a small 'average error' over the interval of approximation. A convenient definition of the average error of the approximation is given by

$$
\begin{equation*}
E(p ; f) \equiv\left[\frac{1}{b-a} \int_{a}^{b}[f(x)-p(x)]^{2} d x\right]^{\frac{1}{2}} \tag{1}
\end{equation*}
$$

This is also called the root-mean-square-error (denoted subsequently by $R M S E$) in the approximation of $f(x)$ by $p(x)$. Note first that choosing $p(x)$ to minimize $E(p ; f)$ is equivalent to minimizing

$$
\int_{a}^{b}[f(x)-p(x)]^{2} d x
$$

thus dispensing with the square root and multiplying fraction (although the minimums are generally different). The minimizing of (1) is called the least squares approximation problem.

Example. Let $f(x)=e^{x}$, let $p(x)=\alpha_{0}+\alpha_{1} x, \alpha_{0}$, α_{1} unknown. Approximate $f(x)$ over $[-1,1]$. Choose α_{0}, α_{1} to minimize

$$
\begin{gather*}
g\left(\alpha_{0}, \alpha_{1}\right) \equiv \int_{-1}^{1}\left[e^{x}-\alpha_{0}-\alpha_{1} x\right]^{2} d x \tag{2}\\
g\left(\alpha_{0}, \alpha_{1}\right)=\int_{-1}^{1}\left\{\begin{array}{c}
e^{2 x}+\alpha_{0}^{2}+\alpha_{1}^{2} x^{2}-2 \alpha_{0} e^{x} \\
-2 \alpha_{1} x e^{x}+2 \alpha_{0} \alpha_{1} x
\end{array}\right\} d x
\end{gather*}
$$

Integrating,
$g\left(\alpha_{0}, \alpha_{1}\right)=c_{1} \alpha_{0}^{2}+c_{2} \alpha_{1}^{2}+c_{3} \alpha_{0} \alpha_{1}+c_{4} \alpha_{0}+c_{5} \alpha_{1}+c_{6}$ with constants $\left\{c_{1}, \ldots, c_{6}\right\}$, e.g.

$$
c_{1}=2, \quad c_{6}=\left(e^{1}-e^{-1}\right) / 2
$$

g is a quadratic polynomial in the two variables α_{0}, α_{1}. To find its minimum, solve the system

$$
\frac{\partial g}{\partial \alpha_{0}}=0, \quad \frac{\partial g}{\partial \alpha_{1}}=0
$$

It is simpler to return to (2) to differentiate, obtaining

$$
\begin{aligned}
& 2 \int_{-1}^{1}\left[e^{x}-\alpha_{0}-\alpha_{1} x\right](-1) d x=0 \\
& 2 \int_{-1}^{1}\left[e^{x}-\alpha_{0}-\alpha_{1} x\right](-x) d x=0
\end{aligned}
$$

This simplifies to

$$
\begin{aligned}
2 \alpha_{0} & =\int_{-1}^{1} e^{x} d x=e-e^{-1} \\
\frac{2}{3} \alpha_{1} & =\int_{-1}^{1} x e^{x} d x=2 e^{-1} \\
\alpha_{0} & =\frac{e-e^{-1}}{2} \doteq 1.1752 \\
\alpha_{1} & =3 e^{-1} \doteq 1.1036
\end{aligned}
$$

Using these values for α_{0} and α_{1}, we denote the resulting linear approximation by

$$
\ell_{1}(x)=\alpha_{0}+\alpha_{1} x
$$

It is called the best linear approximation to e^{x} in the sense of least squares. For the error,

$$
\max _{-1 \leq x \leq 1}\left|e^{x}-\ell_{1}(x)\right| \doteq 0.439
$$

Errors in linear approximations of e^{x} :

Approximation	Max Error	RMSE
Taylor $t_{1}(x)$	0.718	0.246
Least squares $\ell_{1}(x)$	0.439	0.162
Chebyshev $c_{1}(x)$	0.372	0.184
Minimax $m_{1}(x)$	0.279	0.190

The linear least squares approximation to e^{x}

THE GENERAL CASE

Approximate $f(x)$ on $[a, b]$, and let $n \geq 0$. Seek $p(x)$ to minimize the RMSE. Write

$$
\begin{gathered}
p(x)=\alpha_{0}+\alpha_{1} x+\cdots+\alpha_{n} x^{n} \\
g\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n}\right) \equiv \int_{-1}^{1}\left[\begin{array}{r}
f(x)-\alpha_{0}-\alpha_{1} x \\
-\cdots-\alpha_{n} x^{n}
\end{array}\right]^{2} d x
\end{gathered}
$$

Find coefficients $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n}$ to minimize this integral. The integral $g\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n}\right)$ is a quadratic polynomial in the $n+1$ variables $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n}$.

To minimize $g\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n}\right)$, invoke the conditions

$$
\frac{\partial g}{\partial \alpha_{i}}=0, \quad i=0,1, \ldots, n
$$

This yields a set of $n+1$ equations that must be satisfied by a minimizing set $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n}$ for g. Manipulating this set of conditions leads to a simultaneous linear system.

To better understand the form of the linear system, consider the special case of $[a, b]=[0,1]$. Differentiating g with respect to each α_{i}, we obtain

$$
\begin{gathered}
2 \int_{-1}^{1}\left[e^{x}-\alpha_{0}-\cdots-\alpha_{n} x^{n}\right](-1) d x=0 \\
2 \int_{-1}^{1}\left[e^{x}-\alpha_{0}-\cdots-\alpha_{n} x^{n}\right](-x) d x=0 \\
\vdots \\
2 \int_{-1}^{1}\left[e^{x}-\alpha_{0}-\cdots-\alpha_{n} x^{n}\right]\left(-x^{n}\right) d x=0
\end{gathered}
$$

Then the linear system is

$$
\sum_{j=0}^{n} \frac{\alpha_{j}}{i+j+1}=\int_{0}^{1} x^{i} f(x) d x, \quad i=0,1, \ldots, n
$$

We will study the solution of simultaneous linear systems in Chapter 6. There we will see that this linear system is 'ill-conditioned' and is difficult to solve accurately, even for moderately sized values of n such as $n=5$. As a consequence, this is not a good approach to solving for a minimizer of $g\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n}\right)$.

LEGENDRE POLYNOMIALS

Define the Legendre polynomials as follows.

$$
\begin{gathered}
P_{0}(x)=1 \\
P_{n}(x)=\frac{1}{n!2^{n}} \cdot \frac{d^{n}}{d x^{n}}\left[\left(x^{2}-1\right)^{n}\right], \quad n=1,2, \ldots
\end{gathered}
$$

For example,

$$
\begin{aligned}
& P_{1}(x)=x \\
& P_{2}(x)=\frac{1}{2}\left(3 x^{2}-1\right) \\
& P_{3}(x)=\frac{1}{2}\left(5 x^{3}-3 x\right) \\
& P_{4}(x)=\frac{1}{8}\left(35 x^{4}-30 x^{2}+3\right)
\end{aligned}
$$

The Legendre polynomials have many special properties, and they are widely used in numerical analysis and applied mathematics.

Legendre polynomials of degrees 1, 2, 3, 4

PROPERTIES

Introduce the special notation

$$
(f, g)=\int_{a}^{b} f(x) g(x) d x
$$

for general functions $f(x)$ and $g(x)$.

- Degree and normalization:

$$
\operatorname{deg} P_{n}=n, \quad P_{n}(1)=1, \quad n \geq 0
$$

- Triple recursion relation: For $n \geq 1$,

$$
P_{n+1}(x)=\frac{2 n+1}{n+1} x P_{n}(x)-\frac{n}{n+1} P_{n-1}(x)
$$

- Orthogonality and size:

$$
\left(P_{i}, P_{j}\right)=\left\{\begin{array}{cc}
0, & i \neq j \\
\frac{2}{2 j+1}, & i=j
\end{array}\right.
$$

- Zeroes:

All zeroes of $P_{n}(x)$ are located in $[-1,1]$; all zeroes are simple roots of $P_{n}(x)$

- Basis: Every polynomial $p(x)$ of degree $\leq n$ can be written in the form

$$
p(x)=\sum_{j=0}^{n} \beta_{j} P_{j}(x)
$$

with the choice of $\beta_{0}, \beta_{1}, \ldots, \beta_{n}$ uniquely determined from $p(x)$:

$$
\beta_{j}=\frac{\left(p, P_{j}\right)}{\left(P_{j}, P_{j}\right)}, \quad j=0,1, \ldots, n
$$

FINDING THE LEAST SQUARES APPROXIMATION

We solve the least squares approximation problem on only the interval $[-1,1]$. Approximation problems on other intervals $[a, b]$ can be accomplished using a linear change of variable.

We seek to find a polynomial $p(x)$ of degree n that minimizes

$$
\int_{a}^{b}[f(x)-p(x)]^{2} d x
$$

This is equivalent to minimizing

$$
\begin{equation*}
(f-p, f-p) \tag{3}
\end{equation*}
$$

We begin by writing $p(x)$ in the form

$$
p(x)=\sum_{j=0}^{n} \beta_{j} P_{j}(x)
$$

$$
p(x)=\sum_{j=0}^{n} \beta_{j} P_{j}(x)
$$

Substitute into (3), obtaining

$$
\begin{aligned}
& \tilde{g}\left(\beta_{0}, \beta_{1}, \ldots, \beta_{n}\right) \equiv(f-p, f-p) \\
& \quad=\left(f-\sum_{j=0}^{n} \beta_{j} P_{j}, f-\sum_{i=0}^{n} \beta_{i} P_{i}\right)
\end{aligned}
$$

Expand this into the following:

$$
\begin{aligned}
& \widetilde{g}=(f, f)-\sum_{j=0}^{n} \frac{\left(f, P_{j}\right)^{2}}{\left(P_{j}, P_{j}\right)} \\
& +\sum_{j=0}^{n}\left(P_{j}, P_{j}\right)\left[\beta_{j}-\frac{\left(f, P_{j}\right)}{\left(P_{j}, P_{j}\right)}\right]^{2}
\end{aligned}
$$

Looking at this carefully, we see that it is smallest when

$$
\beta_{j}=\frac{\left(f, P_{j}\right)}{\left(P_{j}, P_{j}\right)}, \quad j=0,1, \ldots, n
$$

Looking at this carefully, we see that it is smallest when

$$
\beta_{j}=\frac{\left(f, P_{j}\right)}{\left(P_{j}, P_{j}\right)}, \quad j=0,1, \ldots, n
$$

The minimum for this choice of coefficients is

$$
\widetilde{g}=(f, f)-\sum_{j=0}^{n} \frac{\left(f, P_{j}\right)^{2}}{\left(P_{j}, P_{j}\right)}
$$

We call

$$
\begin{equation*}
\ell_{n}(x)=\sum_{j=0}^{n} \frac{\left(f, P_{j}\right)}{\left(P_{j}, P_{j}\right)} P_{j}(x) \tag{4}
\end{equation*}
$$

the least squares approximation of degree n to $f(x)$ on $[-1,1]$.

If $\beta_{n}=0$, then its actual degree is less than n.

Example. Approximate $f(x)=e^{x}$ on $[-1,1]$. We use (4) with $n=3$:

$$
\begin{equation*}
\ell_{3}(x)=\sum_{j=0}^{3} \beta_{j} P_{j}(x), \quad \beta_{j}=\frac{\left(f, P_{j}\right)}{\left(P_{j}, P_{j}\right)} \tag{5}
\end{equation*}
$$

The coefficients $\left\{\beta_{0}, \beta_{1}, \beta_{2}, \beta_{3}\right\}$ are as follows.

j	0	1	2	3
$\boldsymbol{\beta}_{j}$	2.35040	0.73576	0.14313	0.02013

Using (5) and simplifying,

$$
\ell_{3}(x)=.996294+.997955 x+.536722 x^{2}+.176139 x^{3}
$$

The error in various cubic approximations:

Approximation	Max Error	RMSE
Taylor $t_{3}(x)$.0516	.0145
Least squares $\ell_{3}(x)$.0112	.00334
Chebyshev $c_{3}(x)$.00666	.00384
Minimax $m_{3}(x)$.00553	.00388

Error in the cubic least squares approximation to e^{x}

