A NEAR-MINIMAX APPROXIMATION METHOD

Let $f(x)$ be continuous on $[a, b]=[-1,1]$. Consider approximating f by an interpolatory polynomial of degree at most $n=3$. Let $x_{0}, x_{1}, x_{2}, x_{3}$ be interpolation node points in $[-1,1]$; let $c_{3}(x)$ be of degree ≤ 3 and interpolate $f(x)$ at $\left\{x_{0}, x_{1}, x_{2}, x_{3}\right\}$. The interpolation error is

$$
\begin{array}{r}
f(x)-c_{3}(x)=\frac{\omega(x)}{4!} f^{(4)}\left(\xi_{x}\right), \quad-1 \leq x \leq 1 \\
\omega(x)=\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right) \tag{2}
\end{array}
$$

with ξ_{x} in $[-1,1]$. We want to choose the nodes $\left\{x_{0}, x_{1}, x_{2}, x_{3}\right\}$ so as to minimize the maximum value of $\left|f(x)-c_{3}(x)\right|$ on $[-1,1]$.

From (1), the only general quantity, independent of f, is $\omega(x)$. Thus we choose $\left\{x_{0}, x_{1}, x_{2}, x_{3}\right\}$ to minimize

$$
\begin{equation*}
\max _{-1 \leq x \leq 1}|\omega(x)| \tag{3}
\end{equation*}
$$

Expand to get

$$
\omega(x)=x^{4}+\text { lower degree terms }
$$

This is a monic polynomial of degree 4 . From the theorem in the preceding section, the smallest possible value for (3) is obtained with

$$
\begin{equation*}
\omega(x)=\widetilde{T}_{4}(x)=\frac{T_{4}(x)}{2^{3}}=\frac{1}{8}\left(8 x^{4}-8 x^{2}+1\right) \tag{4}
\end{equation*}
$$

and the smallest value of (3) is $1 / 2^{3}$ in this case. The equation (4) defines implicitly the nodes $\left\{x_{0}, x_{1}, x_{2}, x_{3}\right\}$: they are the roots of $T_{4}(x)$.

In our case this means solving

$$
\begin{align*}
& T_{4}(x)=\cos (4 \theta)=0, \quad x=\cos (\theta) \\
& 4 \theta= \pm \frac{\pi}{2}, \pm \frac{3 \pi}{2}, \pm \frac{5 \pi}{2}, \pm \frac{7 \pi}{2}, \ldots \\
& \theta= \pm \frac{\pi}{8}, \pm \frac{3 \pi}{8}, \pm \frac{5 \pi}{8}, \pm \frac{7 \pi}{8}, \ldots \\
& x=\cos \left(\frac{\pi}{8}\right), \cos \left(\frac{3 \pi}{8}\right), \cos \left(\frac{5 \pi}{8}\right), \ldots \tag{5}
\end{align*}
$$

using $\cos (-\theta)=\cos (\theta)$.

$$
x=\cos \left(\frac{\pi}{8}\right), \cos \left(\frac{3 \pi}{8}\right), \cos \left(\frac{5 \pi}{8}\right), \cos \left(\frac{7 \pi}{8}\right), \ldots
$$

The first four values are distinct; the following ones are repetitive. For example,

$$
\cos \left(\frac{9 \pi}{8}\right)=\cos \left(\frac{7 \pi}{8}\right)
$$

The first four values are

$$
\begin{equation*}
\left\{x_{0}, x_{1}, x_{2}, x_{3}\right\}=\{ \pm 0.382683, \pm 0.923880\} \tag{6}
\end{equation*}
$$

Example. Let $f(x)=e^{x}$ on $[-1,1]$. Use these nodes to produce the interpolating polynomial $c_{3}(x)$ of degree 3. From the interpolation error formula and the bound of $1 / 2^{3}$ for $|\omega(x)|$ on $[-1,1]$, we have

$$
\begin{aligned}
\max _{-1 \leq x \leq 1}\left|f(x)-c_{3}(x)\right| & \leq \frac{1 / 2^{3}}{4!} \max _{-1 \leq x \leq 1} e^{\xi_{x}} \\
& \leq \frac{e}{192} \doteq 0.014158
\end{aligned}
$$

By direct calculation,

$$
\max _{-1 \leq x \leq 1}\left|e^{x}-c_{3}(x)\right| \doteq 0.00666
$$

Interpolation Data: $f(x)=e^{x}$

i	x_{i}	$f\left(x_{i}\right)$	$f\left[x_{0}, \ldots, x_{i}\right]$
0	0.923880	2.5190442	2.5190442
1	0.382683	1.4662138	1.9453769
2	-0.382683	0.6820288	0.7047420
3	-0.923880	0.3969760	0.1751757

The error $e^{x}-c_{3}(x)$

For comparison, $E\left(t_{3}\right) \doteq 0.0142$ and $\rho_{3}\left(e^{x}\right) \doteq 0.00553$.

THE GENERAL CASE

Consider interpolating $f(x)$ on [$-1,1$] by a polynomial of degree $\leq n$, with the interpolation nodes $\left\{x_{0}, \ldots, x_{n}\right\}$ in $[-1,1]$. Denote the interpolation polynomial by $c_{n}(x)$. The interpolation error on $[-1,1]$ is given by

$$
\begin{align*}
f(x)-c_{n}(x) & =\frac{\omega(x)}{(n+1)!} f^{(n+1)}\left(\xi_{x}\right) \tag{7}\\
\omega(x) & =\left(x-x_{0}\right) \cdots\left(x-x_{n}\right)
\end{align*}
$$

with ξ_{x} and unknown point in $[-1,1]$. In order to minimize the interpolation error, we seek to minimize

$$
\begin{equation*}
\max _{-1 \leq x \leq 1}|\omega(x)| \tag{8}
\end{equation*}
$$

The polynomial being minimized is monic of degree $n+1$,

$$
\omega(x)=x^{n+1}+\text { lower degree terms }
$$

From the theorem of the preceding section, this minimum is attained by the monic polynomial

$$
\widetilde{T}_{n+1}(x)=\frac{1}{2^{n}} T_{n+1}(x)
$$

Thus the interpolation nodes are the zeros of $T_{n+1}(x)$; and by the procedure that led to (5), they are given by

$$
\begin{equation*}
x_{j}=\cos \left(\frac{2 j+1}{2 n+2} \pi\right), \quad j=0,1, \ldots, n \tag{9}
\end{equation*}
$$

The near-minimax approximation $c_{n}(x)$ of degree n is obtained by interpolating to $f(x)$ at these $n+1$ nodes on $[-1,1]$.

The polynomial $c_{n}(x)$ is sometimes called a Chebyshev approximation.

Example. Let $f(x)=e^{x}$. the following table contains the maximum errors in $c_{n}(x)$ on [$-1,1$] for varying n. For comparison, we also include the corresponding minimax errors. These figures illustrate that for practical purposes, $c_{n}(x)$ is a satisfactory replacement for the minimax approximation $m_{n}(x)$.

n	$\max \left\|e^{x}-c_{n}(x)\right\|$	$\rho_{n}\left(e^{x}\right)$
1	$3.72 \mathrm{E}-1$	$2.79 \mathrm{E}-1$
2	$5.65 \mathrm{E}-2$	$4.50 \mathrm{E}-2$
3	$6.66 \mathrm{E}-3$	$5.53 \mathrm{E}-3$
4	$6.40 \mathrm{E}-4$	$5.47 \mathrm{E}-4$
5	$5.18 \mathrm{E}-5$	$4.52 \mathrm{E}-5$
6	$3.80 \mathrm{E}-6$	$3.21 \mathrm{E}-6$

THEORETICAL INTERPOLATION ERROR

For the error

$$
f(x)-c_{n}(x)=\frac{\omega(x)}{(n+1)!} f^{(n+1)}\left(\xi_{x}\right)
$$

we have

$$
\max _{-1 \leq x \leq 1}\left|f(x)-c_{n}(x)\right| \leq \frac{\max _{-1 \leq x \leq 1}|\omega(x)|}{(n+1)!} \max _{-1 \leq \xi \leq 1}|f(\xi)|
$$

From the theorem of the preceding section,

$$
\max _{-1 \leq x \leq 1}\left|\widetilde{T}_{n+1}(x)\right|=\max _{-1 \leq x \leq 1}|\omega(x)|=\frac{1}{2^{n}}
$$

in this case. Thus

$$
\max _{-1 \leq x \leq 1}\left|f(x)-c_{n}(x)\right| \leq \frac{1}{(n+1)!2^{2}} \max _{1 \leq \xi \leq 1}|f(\xi)|
$$

OTHER INTERVALS

Consider approximating $f(x)$ on the finite interval $[a, b]$. Introduce the linear change of variables

$$
\begin{align*}
x & =\frac{1}{2}[(1-t) a+(1+t) b] \tag{10}\\
t & =\frac{2}{b-a}\left[x-\frac{b+a}{2}\right] \tag{11}
\end{align*}
$$

Introduce

$$
F(t)=f\left(\frac{1}{2}[(1-t) a+(1+t) b]\right), \quad-1 \leq t \leq 1
$$

The function $F(t)$ on $[-1,1]$ is equivalent to $f(x)$ on [a, b], and we can move between them via (10)-(11). We can now proceed to approximate $f(x)$ on $[a, b]$ by instead approximating $F(t)$ on $[-1,1]$.

Example. Approximating $f(x)=\cos x$ on $[0, \pi / 2]$ is equivalent to approximating

$$
F(t)=\cos \left(\frac{1+t}{4} \pi\right), \quad-1 \leq t \leq 1
$$

