## CHEBYSHEV POLYNOMIALS

Chebyshev polynomials are used in many parts of numerical analysis, and more generally, in applications of mathematics. For an integer $n \geq 0$, define the function

$$
\begin{equation*}
T_{n}(x)=\cos \left(n \cos ^{-1} x\right), \quad-1 \leq x \leq 1 \tag{1}
\end{equation*}
$$

This may not appear to be a polynomial, but we will show it is a polynomial of degree $n$. To simplify the manipulation of (1), we introduce

$$
\begin{equation*}
\theta=\cos ^{-1}(x) \quad \text { or } \quad x=\cos (\theta), \quad 0 \leq \theta \leq \pi \tag{2}
\end{equation*}
$$

Then

$$
\begin{equation*}
T_{n}(x)=\cos (n \theta) \tag{3}
\end{equation*}
$$

Example. $n=0$

$$
T_{0}(x)=\cos (0 \cdot \theta)=1
$$

$n=1$

$$
T_{1}(x)=\cos (\theta)=x
$$

$n=2$

$$
T_{2}(x)=\cos (2 \theta)=2 \cos ^{2}(\theta)-1=2 x^{2}-1
$$




The triple recursion relation. Recall the trigonometric addition formulas,

$$
\cos (\alpha \pm \beta)=\cos (\alpha) \cos (\beta) \mp \sin (\alpha) \sin (\beta)
$$

Let $n \geq 1$, and apply these identities to get

$$
\begin{aligned}
T_{n+1}(x) & =\cos [(n+1) \theta]=\cos (n \theta+\theta) \\
& =\cos (n \theta) \cos (\theta)-\sin (n \theta) \sin (\theta) \\
T_{n-1}(x) & =\cos [(n-1) \theta]=\cos (n \theta-\theta) \\
& =\cos (n \theta) \cos (\theta)+\sin (n \theta) \sin (\theta)
\end{aligned}
$$

Add these two equations, and then use (1) and (3) to obtain

$$
\begin{aligned}
& T_{n+1}(x)+T_{n-1}=2 \cos (n \theta) \cos (\theta)=2 x T_{n}(x) \\
& T_{n+1}(x)=2 x T_{n}(x)-T_{n-1}(x), \quad n \geq 1 \\
&
\end{aligned}
$$

This is called the triple recursion relation for the Chebyshev polynomials. It is often used in evaluating them, rather than using the explicit formula (1).

Example. Recall

$$
\begin{gathered}
T_{0}(x)=1, \quad T_{1}(x)=x \\
T_{n+1}(x)=2 x T_{n}(x)-T_{n-1}(x), \quad n \geq 1
\end{gathered}
$$

Let $n=2$. Then

$$
\begin{aligned}
T_{3}(x) & =2 x T_{2}(x)-T_{1}(x) \\
& =2 x\left(2 x^{2}-1\right)-x \\
& =4 x^{3}-3 x
\end{aligned}
$$

Let $n=3$. Then

$$
\begin{aligned}
T_{4}(x) & =2 x T_{3}(x)-T_{2}(x) \\
& =2 x\left(4 x^{3}-3 x\right)-\left(2 x^{2}-1\right) \\
& =8 x^{4}-8 x^{2}+1
\end{aligned}
$$

The minimum size property. Note that

$$
\begin{equation*}
\left|T_{n}(x)\right| \leq 1, \quad-1 \leq x \leq 1 \tag{5}
\end{equation*}
$$

for all $n \geq 0$. Also, note that

$$
\begin{equation*}
T_{n}(x)=2^{n-1} x^{n}+\text { lower degree terms, } \quad n \geq 1 \tag{6}
\end{equation*}
$$

This can be proven using the triple recursion relation and mathematical induction.

Introduce a modified version of $T_{n}(x)$,

$$
\begin{equation*}
\widetilde{T}_{n}(x)=\frac{1}{2^{n-1}} T_{n}(x)=x^{n}+\text { lower degree terms } \tag{7}
\end{equation*}
$$

From (5) and (6),

$$
\begin{equation*}
\left|\widetilde{T}_{n}(x)\right| \leq \frac{1}{2^{n-1}}, \quad-1 \leq x \leq 1, \quad n \geq 1 \tag{8}
\end{equation*}
$$

Example.

$$
\widetilde{T}_{4}(x)=\frac{1}{8}\left(8 x^{4}-8 x^{2}+1\right)=x^{4}-x^{2}+\frac{1}{8}
$$

A polynomial whose highest degree term has a coefficient of 1 is called a monic polynomial. Formula (8) says the monic polynomial $\widetilde{T}_{n}(x)$ has size $1 / 2^{n-1}$ on $-1 \leq x \leq 1$, and this becomes smaller as the degree $n$ increases. In comparison,

$$
\max _{-1 \leq x \leq 1}\left|x^{n}\right|=1
$$

Thus $x^{n}$ is a monic polynomial whose size does not change with increasing $n$.

Theorem. Let $n \geq 1$ be an integer, and consider all possible monic polynomials of degree $n$. Then the degree $n$ monic polynomial with the smallest maximum on $[-1,1]$ is the modified Chebyshev polynomial $\widetilde{T}_{n}(x)$, and its maximum value on $[-1,1]$ is $1 / 2^{n-1}$.

This result is used in devising applications of Chebyshev polynomials. We apply it to obtain an improved interpolation scheme.

