BEST APPROXIMATION

Given a function $f(x)$ that is continuous on a given interval $[a, b]$, consider approximating it by some polynomial $p(x)$. To measure the error in $p(x)$ as an approximation, introduce

$$
E(p)=\max _{a \leq x \leq b}|f(x)-p(x)|
$$

This is called the maximum error or uniform error of approximation of $f(x)$ by $p(x)$ on $[a, b]$.

With an eye towards efficiency, we want to find the 'best' possible approximation of a given degree n. With this in mind, introduce the following:

$$
\begin{aligned}
\rho_{n}(f) & =\min _{\operatorname{deg}(p) \leq n} E(p) \\
& =\min _{\operatorname{deg}(p) \leq n}\left[\max _{a \leq x \leq b}|f(x)-p(x)|\right]
\end{aligned}
$$

The number $\rho_{n}(f)$ will be the smallest possible uniform error, or minimax error, when approximating $f(x)$ by polynomials of degree at most n. If there is a polynomial giving this smallest error, we denote it by $m_{n}(x)$; thus $E\left(m_{n}\right)=\rho_{n}(f)$.

Example. Let $f(x)=e^{x}$ on $[-1,1]$. In the following table, we give the values of $E\left(t_{n}\right), t_{n}(x)$ the Taylor polynomial of degree n for e^{x} about $x=0$, and $E\left(m_{n}\right)$.

	Maximum	
n	$t_{n}(x)$	$m_{n}(x)$
1	$7.18 \mathrm{E}-1$	$2.79 \mathrm{E}-1$
2	$2.18 \mathrm{E}-1$	$4.50 \mathrm{E}-2$
3	$5.16 \mathrm{E}-2$	$5.53 \mathrm{E}-3$
4	$9.95 \mathrm{E}-3$	$5.47 \mathrm{E}-4$
5	$1.62 \mathrm{E}-3$	$4.52 \mathrm{E}-5$
6	$2.26 \mathrm{E}-4$	$3.21 \mathrm{E}-6$
7	$2.79 \mathrm{E}-5$	$2.00 \mathrm{E}-7$
8	$3.06 \mathrm{E}-6$	$1.11 \mathrm{E}-8$
9	$3.01 \mathrm{E}-7$	$5.52 \mathrm{E}-10$

Consider graphically how we can improve on the Taylor polynomial

$$
t_{1}(x)=1+x
$$

as a uniform approximation to e^{x} on the interval $[-1,1]$.

The linear minimax approximation is

$$
m_{1}(x)=1.2643+1.1752 x
$$

Linear Taylor and minimax approximations to e^{x}

Error in cubic Taylor approximation to e^{x}

Error in cubic minimax approximation to e^{x}

Accuracy of the minimax approximation.

$$
\rho_{n}(f) \leq \frac{[(b-a) / 2]^{n+1}}{(n+1)!2^{n}} \max _{a \leq x \leq b}\left|f^{(n+1)}(x)\right|
$$

This error bound does not always become smaller with increasing n, but it will give a fairly accurate bound for many common functions $f(x)$.

Example. Let $f(x)=e^{x}$ for $-1 \leq x \leq 1$. Then

$$
\begin{equation*}
\rho_{n}\left(e^{x}\right) \leq \frac{e}{(n+1)!2^{n}} \tag{*}
\end{equation*}
$$

n	Bound (*)	$\rho_{n}(f)$
1	$6.80 \mathrm{E}-1$	$2.79 \mathrm{E}-1$
2	$1.13 \mathrm{E}-1$	$4.50 \mathrm{E}-2$
3	$1.42 \mathrm{E}-2$	$5.53 \mathrm{E}-3$
4	$1.42 \mathrm{E}-3$	$5.47 \mathrm{E}-4$
5	$1.18 \mathrm{E}-4$	$4.52 \mathrm{E}-5$
6	$8.43 \mathrm{E}-6$	$3.21 \mathrm{E}-6$
7	$5.27 \mathrm{E}-7$	$2.00 \mathrm{E}-7$

