BEST APPROXIMATION

Given a function f(x) that is continuous on a given interval [a, b], consider approximating it by some polynomial p(x). To measure the error in p(x) as an approximation, introduce

$$E(p) = \max_{a \le x \le b} |f(x) - p(x)|$$

This is called the *maximum error* or *uniform error* of approximation of f(x) by p(x) on [a, b].

With an eye towards efficiency, we want to find the 'best' possible approximation of a given degree n. With this in mind, introduce the following:

$$\rho_n(f) = \min_{\substack{\deg(p) \le n}} E(p)$$
$$= \min_{\substack{\deg(p) \le n}} \left[\max_{\substack{a \le x \le b}} |f(x) - p(x)| \right]$$

The number $\rho_n(f)$ will be the smallest possible uniform error, or *minimax error*, when approximating f(x) by polynomials of degree at most n. If there is a polynomial giving this smallest error, we denote it by $m_n(x)$; thus $E(m_n) = \rho_n(f)$.

Example. Let $f(x) = e^x$ on [-1, 1]. In the following table, we give the values of $E(t_n)$, $t_n(x)$ the Taylor polynomial of degree n for e^x about x = 0, and $E(m_n)$.

	Maximum Error in:		
n	$t_n(x)$	$m_n(x)$	
1	7.18E - 1	2.79E - 1	
2	2.18E-1	4.50E - 2	
3	5.16E - 2	5.53E – 3	
4	9.95E - 3	5.47 E - 4	
5	1.62E-3	4.52E - 5	
6	2.26E - 4	3.21E-6	
7	2.79E - 5	2.00 E - 7	
8	3.06E - 6	1.11E-8	
9	3.01E-7	5.52E-10	

Consider graphically how we can improve on the Taylor polynomial

 $t_1(x) = 1 + x$

as a uniform approximation to e^x on the interval [-1, 1].

The linear minimax approximation is

 $m_1(x) = 1.2643 + 1.1752x$

Linear Taylor and minimax approximations to e^x

Error in cubic Taylor approximation to $e^{\boldsymbol{x}}$

Error in cubic minimax approximation to $e^{\boldsymbol{x}}$

Accuracy of the minimax approximation.

$$\rho_n(f) \le \frac{[(b-a)/2]^{n+1}}{(n+1)!2^n} \max_{a \le x \le b} \left| f^{(n+1)}(x) \right|$$

This error bound does not always become smaller with increasing n, but it will give a fairly accurate bound for many common functions f(x).

Example. Let $f(x) = e^x$ for $-1 \le x \le 1$. Then

$$\rho_n(e^x) \le \frac{e}{(n+1)!2^n} \tag{(*)}$$

\overline{n}	Bound (*)	$\rho_n(f)$
1	6.80E-1	2.79E - 1
2	1.13E-1	4.50E - 2
3	1.42E-2	5.53E - 3
4	1.42E-3	5.47 E - 4
5	1.18E-4	4.52E - 5
6	8.43E – 6	3.21E - 6
7	5.27 E - 7	2.00E-7