
PIECEWISE POLYNOMIAL INTERPOLATION

Recall the examples of higher degree polynomial in-

terpolation of the function f(x) =
³
1 + x2

´−1
on

[−5, 5]. The interpolants Pn(x) oscillated a great

deal, whereas the function f(x) was nonoscillatory.

To obtain interpolants that are better behaved, we

look at other forms of interpolating functions.

Consider the data

x 0 1 2 2.5 3 3.5 4
y 2.5 0.5 0.5 1.5 1.5 1.125 0

What are methods of interpolating this data, other

than using a degree 6 polynomial. Shown in the text

are the graphs of the degree 6 polynomial interpolant,

along with those of piecewise linear and a piecewise

quadratic interpolating functions.

Since we only have the data to consider, we would gen-

erally want to use an interpolant that had somewhat

the shape of that of the piecewise linear interpolant.
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PIECEWISE POLYNOMIAL FUNCTIONS

Consider being given a set of data points (x1, y1), ...,

(xn, yn), with

x1 < x2 < · · · < xn

Then the simplest way to connect the points (xj, yj)

is by straight line segments. This is called a piecewise

linear interpolant of the data
n
(xj, yj)

o
. This graph

has “corners”, and often we expect the interpolant to

have a smooth graph.

To obtain a somewhat smoother graph, consider using

piecewise quadratic interpolation. Begin by construct-

ing the quadratic polynomial that interpolates

{(x1, y1), (x2, y2), (x3, y3)}
Then construct the quadratic polynomial that inter-

polates

{(x3, y3), (x4, y4), (x5, y5)}



Continue this process of constructing quadratic inter-

polants on the subintervals

[x1, x3], [x3, x5], [x5, x7], ...

If the number of subintervals is even (and therefore

n is odd), then this process comes out fine, with the

last interval being [xn−2, xn]. This was illustrated

on the graph for the preceding data. If, however, n is

even, then the approximation on the last interval must

be handled by some modification of this procedure.

Suggest such!

With piecewise quadratic interpolants, however, there

are “corners” on the graph of the interpolating func-

tion. With our preceding example, they are at x3 and

x5. How do we avoid this?

Piecewise polynomial interpolants are used in many

applications. We will consider them later, to obtain

numerical integration formulas.



SMOOTH NON-OSCILLATORY

INTERPOLATION

Let data points (x1, y1), ..., (xn, yn) be given, as let

x1 < x2 < · · · < xn

Consider finding functions s(x) for which the follow-

ing properties hold:

(1) s(xi) = yi, i = 1, ..., n

(2) s(x), s0(x), s00(x) are continuous on [x1, xn].
Then among such functions s(x) satisfying these prop-

erties, find the one which minimizes the integralZ xn

x1

¯̄̄
s00(x)

¯̄̄2
dx

The idea of minimizing the integral is to obtain an in-

terpolating function for which the first derivative does

not change rapidly. It turns out there is a unique so-

lution to this problem, and it is called a natural cubic

spline function.



SPLINE FUNCTIONS

Let a set of node points {xi} be given, satisfying
a ≤ x1 < x2 < · · · < xn ≤ b

for some numbers a and b. Often we use [a, b] =

[x1, xn]. A cubic spline function s(x) on [a, b] with

“breakpoints” or “knots” {xi} has the following prop-
erties:

1. On each of the intervals

[a, x1], [x1, x2], ..., [xn−1, xn], [xn, b]

s(x) is a polynomial of degree ≤ 3.
2. s(x), s0(x), s00(x) are continuous on [a, b].

In the case that we have given data points (x1, y1),...,

(xn, yn), we say s(x) is a cubic interpolating spline

function for this data if

3. s(xi) = yi, i = 1, ..., n.



EXAMPLE

Define

(x− α)3+ =

(
(x− α)3 , x ≥ α

0, x ≤ α

This is a cubic spline function on (−∞,∞) with the
single breakpoint x1 = α.

Combinations of these form more complicated cubic

spline functions. For example,

s(x) = 3 (x− 1)3+ − 2 (x− 3)3+
is a cubic spline function on (−∞,∞) with the break-
points x1 = 1, x2 = 3.

Define

s(x) = p3(x) +
nX

j=1

aj
³
x− xj

´3
+

with p3(x) some cubic polynomial. Then s(x) is a

cubic spline function on (−∞,∞) with breakpoints
{x1, ..., xn}.



Return to the earlier problem of choosing an interpo-

lating function s(x) to minimize the integralZ xn

x1

¯̄̄
s00(x)

¯̄̄2
dx

There is a unique solution to problem. The solution

s(x) is a cubic interpolating spline function, and more-

over, it satisfies

s00(x1) = s00(xn) = 0

Spline functions satisfying these boundary conditions

are called “natural” cubic spline functions, and the so-

lution to our minimization problem is a “natural cubic

interpolatory spline function”. We will show a method

to construct this function from the interpolation data.

Motivation for these boundary conditions can be given

by looking at the physics of bending thin beams of

flexible materials to pass thru the given data. To the

left of x1 and to the right of xn, the beam is straight

and therefore the second derivatives are zero at the

transition points x1 and xn.



CONSTRUCTION OF THE

INTERPOLATING SPLINE FUNCTION

To make the presentation more specific, suppose we

have data

(x1, y1) , (x2, y2) , (x3, y3) , (x4, y4)

with x1 < x2 < x3 < x4. Then on each of the

intervals

[x1, x2] , [x2, x3] , [x3, x4]

s(x) is a cubic polynomial. Taking the first interval,

s(x) is a cubic polynomial and s00(x) is a linear poly-
nomial. Let

Mi = s00(xi), i = 1, 2, 3, 4

Then on [x1, x2],

s00(x) = (x2 − x)M1 + (x− x1)M2

x2 − x1
, x1 ≤ x ≤ x2



We can find s(x) by integrating twice:

s(x) =
(x2 − x)3M1 + (x− x1)

3M2

6 (x2 − x1)
+ c1x+ c2

We determine the constants of integration by using

s(x1) = y1, s(x2) = y2 (*)

Then

s(x) =
(x2 − x)3M1 + (x− x1)

3M2

6 (x2 − x1)

+
(x2 − x) y1 + (x− x1) y2

x2 − x1

−x2 − x1
6

[(x2 − x)M1 + (x− x1)M2]

for x1 ≤ x ≤ x2.

Check that this formula satisfies the given interpola-

tion condition (*)!



We can repeat this on the intervals [x2, x3] and [x3, x4],

obtaining similar formulas.

For x2 ≤ x ≤ x3,

s(x) =
(x3 − x)3M2 + (x− x2)

3M3

6 (x3 − x2)

+
(x3 − x) y2 + (x− x2) y3

x3 − x2

−x3 − x2
6

[(x3 − x)M2 + (x− x2)M3]

For x3 ≤ x ≤ x4,

s(x) =
(x4 − x)3M3 + (x− x3)

3M4

6 (x4 − x3)

+
(x4 − x) y3 + (x− x3) y4

x4 − x3

−x4 − x3
6

[(x4 − x)M3 + (x− x3)M4]



We still do not know the values of the second deriv-

atives {M1,M2,M3,M4}. The above formulas guar-
antee that s(x) and s00(x) are continuous for
x1 ≤ x ≤ x4. For example, the formula on [x1, x2]

yields

s(x2) = y2, s00(x2) =M2

The formula on [x2, x3] also yields

s(x2) = y2, s00(x2) =M2

All that is lacking is to make s0(x) continuous at x2
and x3. Thus we require

s0(x2 + 0) = s0(x2 − 0)
s0(x3 + 0) = s0(x3 − 0) (**)

This means

lim
x&x2

s0(x) = lim
x%x2

s0(x)

and similarly for x3.



To simplify the presentation somewhat, I assume in

the following that our node points are evenly spaced:

x2 = x1 + h, x3 = x1 + 2h, x4 = x1 + 3h

Then our earlier formulas simplify to

s(x) =
(x2 − x)3M1 + (x− x1)

3M2

6h

+
(x2 − x) y1 + (x− x1) y2

h

−h
6
[(x2 − x)M1 + (x− x1)M2]

for x1 ≤ x ≤ x2, with similar formulas on [x2, x3] and

[x3, x4].



Without going thru all of the algebra, the conditions

(**) leads to the following pair of equations.

h

6
M1 +

2h

3
M2 +

h

6
M3

=
y3 − y2

h
− y2 − y1

h
h

6
M2 +

2h

3
M3 +

h

6
M4

=
y4 − y3

h
− y3 − y2

h

This gives us two equations in four unknowns. The

earlier boundary conditions on s00(x) gives us immedi-
ately

M1 =M4 = 0

Then we can solve the linear system for M2 and M3.



EXAMPLE

Consider the interpolation data points

x 1 2 3 4

y 1 1
2

1
3

1
4

In this case, h = 1, and linear system becomes

2

3
M2 +

1

6
M3 = y3 − 2y2 + y1 =

1

3
1

6
M2 +

2

3
M3 = y4 − 2y3 + y2 =

1

12

This has the solution

M2 =
1

2
, M3 = 0

This leads to the spline function formula on each

subinterval.



On [1, 2],

s(x) =
(x2 − x)3M1 + (x− x1)

3M2

6h

+
(x2 − x) y1 + (x− x1) y2

h

−h
6
[(x2 − x)M1 + (x− x1)M2]

=
(2− x)3 · 0 + (x− 1)3

³
1
2

´
6

+
(2− x) · 1 + (x− 1)

³
1
2

´
1

−1
6

h
(2− x) · 0 + (x− 1)

³
1
2

´i
= 1
12 (x− 1)3 − 7

12 (x− 1) + 1

Similarly, for 2 ≤ x ≤ 3,

s(x) =
−1
12
(x− 2)3 + 1

4
(x− 2)2 − 1

3
(x− 1) + 1

2

and for 3 ≤ x ≤ 4,

s(x) =
−1
12
(x− 4) + 1

4
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Graph of example of natural cubic spline

interpolation



x 0 1 2 2.5 3 3.5 4
y 2.5 0.5 0.5 1.5 1.5 1.125 0

x

y

1 2 3 4

1

2

Interpolating natural cubic spline function



ALTERNATIVE BOUNDARY CONDITIONS

Return to the equations

h

6
M1 +

2h

3
M2 +

h

6
M3

=
y3 − y2

h
− y2 − y1

h
h

6
M2 +

2h

3
M3 +

h

6
M4

=
y4 − y3

h
− y3 − y2

h

Sometimes other boundary conditions are imposed on

s(x) to help in determining the values of M1 and

M4. For example, the data in our numerical exam-

ple were generated from the function f(x) = 1
x. With

it, f 00(x) = 2
x3
, and thus we could use

M1 = 2, M4 =
1

32

With this we are led to a new formula for s(x), one

that approximates f(x) = 1
x more closely.



THE CLAMPED SPLINE

In this case, we augment the interpolation conditions

s(xi) = yi, i = 1, 2, 3, 4

with the boundary conditions

s0(x1) = y01, s0(x4) = y04 (#)

The conditions (#) lead to another pair of equations,

augmenting the earlier ones. Combined these equa-

tions are

h

3
M1 +

h

6
M2 =

y2 − y1
h

− y01
h

6
M1 +

2h

3
M2 +

h

6
M3

=
y3 − y2

h
− y2 − y1

h
h

6
M2 +

2h

3
M3 +

h

6
M4

=
y4 − y3

h
− y3 − y2

h
h

6
M3 +

h

3
M4 = y04 −

y4 − y3
h



For our numerical example, it is natural to obtain

these derivative values from f 0(x) = − 1
x2
:

y01 = −1, y04 = −
1

16

When combined with your earlier equations, we have

the system

1

3
M1 +

1

6
M2 =

1

2
1

6
M1 +

2

3
M2 +

1

6
M3 =

1

3
1

6
M2 +

2

3
M3 +

1

6
M4 =

1

12
1

6
M3 +

1

3
M4 =

1

48

This has the solution

[M1,M2,M3,M4] =
·
173

120
,
7

60
,
11

120
,
1

60

¸



We can now write the functions s(x) for each of the

subintervals [x1, x2], [x2, x3], and [x3, x4]. Recall for

x1 ≤ x ≤ x2,

s(x) =
(x2 − x)3M1 + (x− x1)

3M2

6h

+
(x2 − x) y1 + (x− x1) y2

h

−h
6
[(x2 − x)M1 + (x− x1)M2]

We can substitute in from the data

x 1 2 3 4

y 1 1
2

1
3

1
4

and the solutions {Mi}. Doing so, consider the error
f(x)− s(x). As an example,

f(x) =
1

x
, f

µ
3

2

¶
=
2

3
, s

µ
3

2

¶
= .65260

This is quite a decent approximation.



THE GENERAL PROBLEM

Consider the spline interpolation problem with n nodes

(x1, y1) , (x2, y2) , ..., (xn, yn)

and assume the node points {xi} are evenly spaced,
xj = x1 + (j − 1)h, j = 1, ..., n

We have that the interpolating spline s(x) on

xj ≤ x ≤ xj+1 is given by

s(x) =

³
xj+1 − x

´3
Mj +

³
x− xj

´3
Mj+1

6h

+

³
xj+1 − x

´
yj +

³
x− xj

´
yj+1

h

−h
6

h³
xj+1 − x

´
Mj +

³
x− xj

´
Mj+1

i
for j = 1, ..., n− 1.



To enforce continuity of s0(x) at the interior node
points x2, ..., xn−1, the second derivatives

n
Mj

o
must

satisfy the linear equations

h

6
Mj−1 +

2h

3
Mj +

h

6
Mj+1 =

yj−1 − 2yj + yj+1

h

for j = 2, ..., n− 1. Writing them out,

h

6
M1 +

2h

3
M2 +

h

6
M3 =

y1 − 2y2 + y3
h

h

6
M2 +

2h

3
M3 +

h

6
M4 =

y2 − 2y3 + y4
h

...
h

6
Mn−2 +

2h

3
Mn−1 +

h

6
Mn =

yn−2 − 2yn−1 + yn

h

This is a system of n−2 equations in the n unknowns
{M1, ...,Mn}. Two more conditions must be imposed
on s(x) in order to have the number of equations equal

the number of unknowns, namely n. With the added

boundary conditions, this form of linear system can be

solved very efficiently.



BOUNDARY CONDITIONS

“Natural” boundary conditions

s00(x1) = s00(xn) = 0
Spline functions satisfying these conditions are called
“natural cubic splines”. They arise out the minimiza-
tion problem stated earlier. But generally they are not
considered as good as some other cubic interpolating
splines.

“Clamped” boundary conditions We add the condi-
tions

s0(x1) = y01, s0(xn) = y0n
with y01, y0n given slopes for the endpoints of s(x) on
[x1, xn]. This has many quite good properties when
compared with the natural cubic interpolating spline;
but it does require knowing the derivatives at the end-
points.

“Not a knot” boundary conditions This is more com-
plicated to explain, but it is the version of cubic spline
interpolation that is implemented in Matlab.



THE “NOT A KNOT” CONDITIONS

As before, let the interpolation nodes be

(x1, y1) , (x2, y2) , ..., (xn, yn)

We separate these points into two categories. For

constructing the interpolating cubic spline function,

we use the points

(x1, y1) , (x3, y3) , ..., (xn−2, yn−2) , (xn, yn)
Thus deleting two of the points. We now have n− 2
points, and the interpolating spline s(x) can be deter-

mined on the intervals

[x1, x3] , [x3, x4] , ..., [xn−3, xn−2] , [xn−2, xn]
This leads to n− 4 equations in the n− 2 unknowns
M1,M3, ...,Mn−2,Mn. The two additional boundary

conditions are

s(x2) = y2, s(xn−1) = yn−1
These translate into two additional equations, and we

obtain a system of n−2 linear simultaneous equations
in the n− 2 unknowns M1,M3, ...,Mn−2,Mn.
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Interpolating cubic spline function with ”not-a knot”

boundary conditions



MATLAB SPLINE FUNCTION LIBRARY

Given data points

(x1, y1) , (x2, y2) , ..., (xn, yn)

type arrays containing the x and y coordinates:

x = [x1 x2 ...xn]
y = [y1 y2 ...yn]
plot (x, y, ’o’)

The last statement will draw a plot of the data points,

marking them with the letter ‘oh’. To find the inter-

polating cubic spline function and evaluate it at the

points of another array xx, say

h = (xn − x1) / (10 ∗ n) ; xx = x1 : h : xn;

use

yy = spline (x, y, xx)
plot (x, y, ’o’, xx, yy)

The last statement will plot the data points, as be-

fore, and it will plot the interpolating spline s(x) as a

continuous curve.



ERROR IN CUBIC SPLINE INTERPOLATION

Let an interval [a, b] be given, and then define

h =
b− a

n− 1, xj = a+ (j − 1)h, j = 1, ..., n

Suppose we want to approximate a given function

f(x) on the interval [a, b] using cubic spline inter-

polation. Define

yi = f(xi), j = 1, ..., n

Let sn(x) denote the cubic spline interpolating this

data and satisfying the “not a knot” boundary con-

ditions. Then it can be shown that for a suitable

constant c,

En ≡ max
a≤x≤b |f(x)− sn(x)| ≤ ch4

The corresponding bound for natural cubic spline in-

terpolation contains only a term of h2 rather than h4;

it does not converge to zero as rapidly.



EXAMPLE

Take f(x) = arctanx on [0, 5]. The following ta-

ble gives values of the maximum error En for various

values of n. The values of h are being successively

halved.

n En E1
2n
/En

7 7.09E−3
13 3.24E−4 21.9
25 3.06E−5 10.6
49 1.48E−6 20.7
97 9.04E−8 16.4


