
COMPUTING ANOMALIES

These examples are meant to help motivate the study

of machine arithmetic.

1. Calculator example: Use an HP-15C calculator,

which contains 10 digits in its display. Let

x1 = x2 = x3 = 98765

There are keys on the calculator for the mean

ξ =
1

n

nX
j=1

xj

and the standard deviation s where

s2 =
1

n− 1
nX

j=1

³
ξ − xj

´2
In our case, what should these equal? In fact, the

calculator gives

ξ = 98765 s
.
= 1.58

Why?



2. A Fortran program example: Consider two pro-

grams run on a now extinct computer.

Program A:

A = 1.0 + 2.0 ∗ ∗(−23)
B = A− 1.0
PRINT ∗, A,B
END
Output: 1.0 1.19E − 7 (

.
= 2−23)

Program B:

A = 1.0 + 2.0 ∗ ∗(−23)
SILLY = 0.0
B = A− 1.0
PRINT ∗, A,B
END
Output: 1.0 0.0

Why the change, since presumably the variable

SILLY does not have any connection to B.



DECIMAL FLOATING-POINT NUMBERS

Floating point notation is akin to what is called sci-

entific notation in high school algebra. For a nonzero

number x, we can write it in the form

x = σ · ξ · 10e

with e an integer, 1 ≤ ξ < 10, and σ = +1 or −1.
Thus

50

3
= (1.66666 · · · )10 · 101, with σ = +1

On a decimal computer or calculator, we store x by

instead storing σ, ξ, and e. We must restrict the

number of digits in ξ and the size of the exponent e.

For example, on an HP-15C calculator, the number of

digits kept in ξ is 10, and the exponent is restricted

to −99 ≤ e ≤ 99.



BINARY FLOATING-POINT NUMBERS

We now do something similar with the binary repre-

sentation of a number x. Write

x = σ · ξ · 2e

with

1 ≤ ξ < (10)2 = 2

and e an integer. For example,

(.1)10 = (1.10011001100 · · · )2 · 2−4, σ = +1

The number x is stored in the computer by storing the

σ, ξ, and e. On all computers, there are restrictions

on the number of digits in ξ and the size of e.



FLOATING POINT NUMBERS

When a number x outside a computer or calculator

is converted into a machine number, we denote it by

fl(x). On an HP-calculator,

fl(.3333 · · · ) = (3.333333333)10 · 10−1

The decimal fraction of infinite length will not fit in

the registers of the calculator, but the latter 10-digit

number will fit. Some calculators actually carry more

digits internally than they allow to be displayed.

On a binary computer, we use a similar notation. I will

concentrate on a particular form of computer float-

ing point number, that called the IEEE floating point

standard.

In single precision, we write such a number as

fl(x) = σ · (1.a1a2 · · · a23)2 · 2e



fl(x) = σ · (1.a1a2 · · · a23)2 · 2e

The significand ξ = (1.a1a2 · · · a23)2 immediately sat-
isfies 1 ≤ ξ < 2. What are the limits on e.

To understand the limits on e and the number of bi-

nary digits chosen for ξ, we must look roughly at how

the number x will be stored in the computer. Basi-

cally, we store σ as a single bit, the significand ξ as 24

bits (only 23 need be stored), and the exponent fills

out 32 bits (=4 bytes). Thus the exponent e occupies

8 bits, including both negative and positive integers.

Roughly speaking, we have that e must satisfy

− (1111111)2 ≤ e ≤ (1111111)2
−127 ≤ e ≤ 127

In actuality, the limits are

−126 ≤ e ≤ 127
for reasons related to the storage of 0 and other num-

bers such as ±∞.



What is the connection of the 24 bits in the significand
ξ to the number of decimal digits in the storage of
a number x into floating point form. One way of
answering this is to find the integer M for which
1. 0 < x ≤ M and x an integer implies fl(x) = x;
and
2. fl(M + 1) 6=M + 1
This integer M is at least as big as1.11 · · · 1| {z }

23 10s


2

· 223 = 223 + · · ·+ 20

This sums to 224− 1. In addition, 224 = (1.0 · · · 0)2 ·
224 also stores exactly. What about 224 + 1? It does
not store exactly, as1.0 · · · 0| {z }

23 00s
1


2

· 224

Storing this would require 25 bits, one more than al-
lowed. Thus

M = 224 = 16777216

This means that all 7 digit decimal integers store ex-
actly, along with a few 8 digit integers.



THE MACHINE EPSILON

Let y be the smallest number representable in the ma-

chine arithmetic that is greater than 1 in the machine.

The machine epsilon is η = y − 1. It is a widely used
measure of the accuracy possible in representing num-

bers in the machine.

The number 1 has the simple floating point represen-

tation

1 = (1.00 · · · 0)2 · 20

What is the smallest number that is greater than 1?

It is

1 + 2−23 = (1.0 · · · 01)2 · 20 > 1

and the machine epsilon in IEEE single precision float-

ing point format is η = 2−23 .
= 1.19× 10−7.



THE UNIT ROUND

Consider the smallest number δ > 0 that is repre-

sentable in the machine and for which

1 + δ > 1

in the arithmetic of the machine.

For any number 0 < α < δ, the result of 1 + α is

exactly 1 in the machines arithmetic. Thus α ‘drops

off the end’ of the floating point representation in the

machine. The size of δ is another way of describing

the accuracy attainable in the floating point represen-

tation of the machine. The machine epsilon.has been

replacing it in recent years.



It is not too difficult to derive δ. The number 1 has

the simple floating point representation

1 = (1.00 · · · 0)2 · 20

What is the smallest number which can be added to

this without disappearing? Certainly we can write

1 + 2−23 = (1.0 · · · 01)2 · 20 > 1

Past this point, we need to know whether we are us-

ing chopped arithmetic or rounded arithmetic. We

will shortly look at both of these. With chopped

arithmetic, δ = 2−23; and with rounded arithmetic,
δ = 2−24.



ROUNDING AND CHOPPING

Let us first consider these concepts with decimal arith-

metic. We write a computer floating point number z

as

z = σ · ζ · 10e ≡ σ · (a1.a2 · · · an)10 · 10e

with a1 6= 0, so that there are n decimal digits in the
significand (a1.a2 · · · an)10.

Given a general number

x = σ · (a1.a2 · · · an · · · )10 · 10e, a1 6= 0
we must shorten it to fit within the computer. This

is done by either chopping or rounding. The floating

point chopped version of x is given by

fl(x) = σ · (a1.a2 · · · an)10 · 10e

where we assume that e fits within the bounds re-

quired by the computer or calculator.



For the rounded version, we must decide whether to

round up or round down. A simplified formula is

fl(x) =(
σ · (a1.a2 · · · an)10 · 10e an+1 < 5

σ · [(a1.a2 · · · an)10 + (0.0 · · · 1)10] · 10e an+1 ≥ 5
The term (0.0 · · · 1)10 denotes 10−n+1, giving the or-
dinary sense of rounding with which you are familiar.

In the single case

(0.0 · · · 0an+1an+2 · · · )10 = (0.0 · · · 0500 · · · )10
a more elaborate procedure is used so as to assure an

unbiased rounding.



CHOPPING/ROUNDING IN BINARY

Let

x = σ · (1.a2 · · · an · · · )2 · 2e

with all ai equal to 0 or 1. Then for a chopped floating

point representation, we have

fl(x) = σ · (1.a2 · · · an)2 · 2e

For a rounded floating point representation, we have

fl(x) =(
σ · (1.a2 · · · an)2 · 10e an+1 = 0

σ · [(1.a2 · · · an)2 + (0.0 · · · 1)2] · 10e an+1 = 1



ERRORS

The error x−fl(x) = 0 when x needs no change to be
put into the computer or calculator. Of more interest

is the case when the error is nonzero. Consider first

the case x > 0 (meaning σ = +1). The case with

x < 0 is the same, except for the sign being opposite.

With x 6= fl(x), and using chopping, we have

fl(x) < x

and the error x− fl(x) is always positive. This later

has major consequences in extended numerical com-

putations. With x 6= fl(x) and rounding, the error

x− fl(x) is negative for half the values of x, and it is

positive for the other half of possible values of x.



We often write the relative error as

x− fl(x)

x
= −ε

This can be expanded to obtain

fl(x) = (1 + ε)x

Thus fl(x) can be considered as a perturbed value

of x. This is used in many analyses of the effects of

chopping and rounding errors in numerical computa-

tions.

For bounds on ε, we have

−2−n ≤ ε ≤ 2−n, rounding
−2−n+1 ≤ ε ≤ 0, chopping



IEEE ARITHMETIC

We are only giving the minimal characteristics of IEEE

arithmetic. There are many options available on the

types of arithmetic and the chopping/rounding. The

default arithmetic uses rounding.

Single precision arithmetic:

n = 24, −126 ≤ e ≤ 127
This results in

M = 224 = 16777216

η = 2−23 = 1.19× 10−7

Double precision arithmetic:

n = 53, −1022 ≤ e ≤ 1023
What are M and η?

There is also an extended representation, having n =

69 digits in its significand.



NUMERICAL PRECISION IN MATLAB

MATLAB can be used to generate the binary float-

ing point representation of a number. Execute the

command

format hex

This will cause all subsequent numerical output to the

screen to be given in hexadecimal format (base 16).

For example, listing the number 7 results in an output

of

401c000000000000

The 16 hexadecimal digits are {0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
a, b, c, d, e, f}. To obtain the binary representation,
convert each hexadecimal digit to a four digit binary

number. For the above number, we obtain the binary

expansion

0100 0000 0001 1100 0000 . . . 0000

for the number 7 in IEEE double precision floating-

point format.



NUMERICAL PRECISION IN FORTRAN

In Fortran, variables take on default types if no explicit

typing is given. If a variable begins with I, J,K,L,M,

or N , then the default type is INTEGER. Otherwise,

the default type is REAL, or “SINGLE PRECISION”.

We have other variable types, including DOUBLE PRE-

CISION.

Redefining the default typing : Use the statement

IMPLICIT DOUBLE PRECISION(A-H,O-Z)

to change the original default, of REAL, to DOUBLE

PRECISION. You can always override the default typ-

ing with explicit typing. For example

DOUBLE PRECISION INTEGRAL, MEAN

INTEGER P, Q, TML OUT



FORTRAN CONSTANTS

If you want to have a constant be DOUBLE PRECI-

SION, you should make a habit of ending it with D0.

For example, consider

DOUBLE PRECISION PI
...
PI=3.14159265358979

This will be compiled in way you did not intend. The

number will be rounded to single precision length and

then stored in a constant table. At run time, it will

be retrieved, zeros will be appended to extend it to

double precision length, and then it will be stored in

PI. Instead, write

PI=3.14159265358979D0


