EVALUATING A POLYNOMIAL

Consider having a polynomial

$$
p(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}
$$

which you need to evaluate for many values of x. How do you evaluate it? This may seem a strange question, but the answer is not as obvious as you might think.

The standard way, written in a loose algorithmic format:

$$
\begin{aligned}
& \text { poly }=a_{0} \\
& \text { for } j=1: n \\
& \quad \text { poly }=\text { poly }+a_{j} x^{j} \\
& \text { end }
\end{aligned}
$$

To compare the costs of different numerical methods, we do an operations count, and then we compare these for the competing methods. Above, the counts are as follows:
additions :
n
multiplications : $1+2+3+\cdots+n=\frac{n(n+1)}{2}$
This assumes each term $a_{j} x^{j}$ is computed independently of the remaining terms in the polynomial.

Next, do the terms x^{j} recursively:

$$
x^{j}=x \cdot x^{j-1}
$$

Then to compute $\left\{x^{2}, x^{3}, \ldots, x^{n}\right\}$ will cost $n-1$ multiplications. Our algorithm becomes

$$
\begin{aligned}
& \text { poly }=a_{0}+a_{1} x \\
& \text { power }=x \\
& \text { for } j=2: n \\
& \quad \text { power }=x \cdot \text { power } \\
& \text { poly }=\text { poly }+a_{j} \cdot \text { power } \\
& \text { end }
\end{aligned}
$$

The total operations cost is

$$
\begin{array}{cl}
\text { additions : } & n \\
\text { multiplications : } & n+n-1=2 n-1
\end{array}
$$

When n is evenly moderately large, this is much less than for the first method of evaluating $p(x)$. For example, with $n=20$, the first method has 210 multiplications, whereas the second has 39 multiplications.

We now considered nested multiplication. As examples of particular degrees, write

$$
\begin{array}{ll}
n=2: & p(x)=a_{0}+x\left(a_{1}+a_{2} x\right) \\
n=3: & p(x)=a_{0}+x\left(a_{1}+x\left(a_{2}+a_{3} x\right)\right) \\
n=4: & p(x)=a_{0}+x\left(a_{1}+x\left(a_{2}+x\left(a_{3}+a_{4} x\right)\right)\right)
\end{array}
$$

These contain, respectively, 2,3 , and 4 multiplications. This is less than the preceding method, which would have need 3,5 , and 7 multiplications, respectively.

For the general case, write
$p(x)=a_{0}+x\left(a_{1}+x\left(a_{2}+\cdots+x\left(a_{n-1}+a_{n} x\right) \cdots\right)\right)$
This requires n multiplications, which is only about half that for the preceding method. For an algorithm, write

$$
\begin{aligned}
& \text { poly }=a_{n} \\
& \text { for } j=n-1:-1: 0 \\
& \quad \text { poly }=a_{j}+x \cdot \text { poly } \\
& \text { end }
\end{aligned}
$$

With all three methods, the number of additions is n; but the number of multiplications can be dramatically different for large values of n.

NESTED MULTIPLICATION

Imagine we are evaluating the polynomial

$$
p(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}
$$

at a point $x=z$. Thus with nested multiplication
$p(z)=a_{0}+z\left(a_{1}+z\left(a_{2}+\cdots+z\left(a_{n-1}+a_{n} z\right) \cdots\right)\right)$
We can write this as the following sequence of operations:

$$
\begin{aligned}
b_{n} & =a_{n} \\
b_{n-1} & =a_{n-1}+z b_{n} \\
b_{n-2} & =a_{n-2}+z b_{n-1} \\
& \vdots \\
b_{0} & =a_{0}+z b_{1}
\end{aligned}
$$

The quantities b_{n-1}, \ldots, b_{0} are simply the quantities in parentheses, starting from the inner most and working outward.

Introduce

$$
q(x)=b_{1}+b_{2} x+b_{3} x^{2}+\cdots+b_{n} x^{n-1}
$$

Claim:

$$
\begin{equation*}
p(x)=b_{0}+(x-z) q(x) \tag{*}
\end{equation*}
$$

Proof: Simply expand

$$
b_{0}+(x-z)\left(b_{1}+b_{2} x+b_{3} x^{2}+\cdots+b_{n} x^{n-1}\right)
$$

and use the fact that

$$
z b_{j}=b_{j-1}-a_{j-1}, \quad j=1, \ldots, n
$$

With this result $\left({ }^{*}\right)$, we have

$$
\frac{p(x)}{x-z}=\frac{b_{0}}{x-z}+q(x)
$$

Thus $q(x)$ is the quotient when dividing $p(x)$ by $x-z$, and b_{0} is the remainder.

If z is a zero of $p(x)$, then $b_{0}=0$; and then

$$
p(x)=(x-z) q(x)
$$

For the remaining roots of $p(x)$, we can concentrate on finding those of $q(x)$. In rootfinding for polynomials, this process of reducing the size of the problem is called deflation.

Another consequence of $(*)$ is the following. Form the derivative of $\left({ }^{*}\right)$ with respect to x, obtaining

$$
\begin{aligned}
p^{\prime}(x) & =(x-z) q^{\prime}(x)+q(x) \\
p^{\prime}(z) & =q(z)
\end{aligned}
$$

Thus to evaluate $p(x)$ and $p^{\prime}(x)$ simultaneously at $x=$ z, we can use nested multiplication for $p(z)$ and we can use the intermediate steps of this to also evaluate $p^{\prime}(z)$. This is useful when doing rootfinding problems for polynomials by means of Newton's method.

APPROXIMATING $S F(x)$

Define

$$
S F(x)=\frac{1}{x} \int_{0}^{x} \frac{\sin t}{t} d t, \quad x \neq 0
$$

We use Taylor polynomials to approximate this function, to obtain a way to compute it with accuracy and simplicity.

As an example, begin with the degree 3 Taylor approximation to $\sin t$, expanded about $t=0$:

$$
\sin t=t-\frac{1}{6} t^{3}+\frac{1}{120} t^{5} \cos c_{t}
$$

with c_{t} between 0 and t. Then

$$
\begin{aligned}
\frac{\sin t}{t} & =1-\frac{1}{6} t^{2}+\frac{1}{120} t^{4} \cos c_{t} \\
\int_{0}^{x} \frac{\sin t}{t} d t & =\int_{0}^{x}\left[1-\frac{1}{6} t^{2}+\frac{1}{120} t^{4} \cos c_{t}\right] d t \\
& =x-\frac{1}{18} x^{3}+\frac{1}{120} \int_{0}^{x} t^{4} \cos c_{t} d t \\
\frac{1}{x} \int_{0}^{x} \frac{\sin t}{t} d t & =1-\frac{1}{18} x^{2}+R_{2}(x) \\
R_{2}(x) & =\frac{1}{120} \frac{1}{x} \int_{0}^{x} t^{4} \cos c_{t} d t
\end{aligned}
$$

How large is the error in the approximation

$$
S F(x) \approx 1-\frac{1}{18} x^{2}
$$

on the interval $[-1,1]$? Since $\left|\cos c_{t}\right| \leq 1$, we have for $x>0$ that

$$
\begin{aligned}
0 \leq R_{2}(x) & \leq \frac{1}{120} \frac{1}{x} \int_{0}^{x} t^{4} d t \\
& =\frac{1}{600} x^{4}
\end{aligned}
$$

and the same result can be shown for $x<0$. Then for $|x| \leq 1$, we have

$$
0 \leq R_{2}(x) \leq \frac{1}{600}
$$

To obtain a more accurate approximation, we can proceed exactly as above, but simply use a higher degree approximation to $\sin t$.

In the book we consider finding a Taylor polynomial approximation to $S F(x)$ with its error satisfying

$$
\left|R_{8}(x)\right| \leq 5 \times 10^{-9}, \quad|x| \leq 1
$$

A Matlab program, plot_sint.m, implementing this approximation is given in the text and in the class account. The one in the class account includes the needed additional functions sint_tay.m and poly_even.m.

Begin with a Taylor series for $\sin t$,

$$
\begin{aligned}
& \sin t=t-\frac{t^{3}}{3!}+\frac{t^{5}}{5!}-\cdots+(-1)^{n-1} \frac{t^{2 n-1}}{(2 n-1)!} \\
&+(-1)^{n} \frac{t^{2 n+1}}{(2 n+1)!} \cos \left(c_{t}\right)
\end{aligned}
$$

with c_{t} between 0 and t. Then write

$$
\begin{aligned}
& \text { Sint } x=\frac{1}{x} \int_{0}^{x}\left[1-\frac{t^{2}}{3!}+\frac{t^{4}}{5!}-\cdots\right. \\
& \left.\quad+(-1)^{n-1} \frac{t^{2 n-2}}{(2 n-1)!}\right] d t+R_{2 n-2}(x) \\
& =1-\frac{x^{2}}{3!3}+\frac{x^{4}}{5!5}-\cdots \\
& +(-1)^{n-1} \frac{x^{2 n-2}}{(2 n-1)!(2 n-1)}+R_{2 n-2}(x) \\
& R_{2 n-2}(x)=\frac{1}{x} \int_{0}^{x}(-1)^{n} \frac{t^{2 n}}{(2 n+1)!} \cos \left(c_{t}\right) d t
\end{aligned}
$$

$$
R_{2 n-2}(x)=\frac{1}{x} \int_{0}^{x}(-1)^{n} \frac{t^{2 n}}{(2 n+1)!} \cos \left(c_{t}\right) d t
$$

To simplify matters, let $x>0$. Since $\left|\cos \left(c_{t}\right)\right| \leq 1$,

$$
\left|R_{2 n-2}(x)\right| \leq \frac{1}{x} \int_{0}^{x} \frac{t^{2 n}}{(2 n+1)!} d t=\frac{x^{2 n}}{(2 n+1)!(2 n+1)}
$$

It is easy to see that this bound is also valid for $x<0$. As required, choose the degree so that

$$
\left|R_{2 n-2}(x)\right| \leq 5 \times 10^{-9}
$$

From the error bound,

$$
\max _{|x| \leq 1}\left|R_{2 n-2}(x)\right| \leq \frac{1}{(2 n+1)!(2 n+1)}
$$

Choose n so that this upper bound is itself bounded by 5×10^{-9}. This is true if $2 n+1 \geq 11$, i.e. $n \geq 5$.

The polynomial is

$$
p(x)=1-\frac{x^{2}}{3!3}+\frac{x^{4}}{5!5}-\frac{x^{6}}{7!7}+\frac{x^{8}}{9!9}, \quad-1 \leq x \leq 1
$$

and

$$
|S F(x)-p(x)| \leq 5 \times 10^{-9}, \quad|x| \leq 1
$$

To evaluate it efficiently, we set $u=x^{2}$ and evaluate

$$
g(u)=1-\frac{u}{18}+\frac{u^{2}}{600}-\frac{u^{3}}{35280}+\frac{u^{4}}{3265920}
$$

After the evaluation of the coefficients (done once), the total number of arithmetic evaluations is 4 additions and 5 multiplications to evaluate $p(x)$ for each value of x.

