THE TAYLOR POLYNOMIAL ERROR FORMULA

Let $f(x)$ be a given function, and assume it has derivatives around some point $x=a$ (with as many derivatives as we find necessary). For the error in the Taylor polynomial $p_{n}(x)$, we have the formulas

$$
\begin{aligned}
f(x)-p_{n}(x) & =\frac{1}{(n+1)!}(x-a)^{n+1} f^{(n+1)}\left(c_{x}\right) \\
& =\frac{1}{n!} \int_{a}^{x}(x-t)^{n} f^{(n+1)}(t) d t
\end{aligned}
$$

The point c_{x} is restricted to the interval bounded by x and a, and otherwise c_{x} is unknown. We will use the first form of this error formula, although the second is more precise in that you do not need to deal with the unknown point c_{x}.

Consider the special case of $n=0$. Then the Taylor polynomial is the constant function:

$$
f(x) \approx p_{0}(x)=f(a)
$$

The first form of the error formula becomes

$$
f(x)-p_{0}(x)=f(x)-f(a)=(x-a) f^{\prime}\left(c_{x}\right)
$$

with c_{x} between a and x. You have seen this in your beginning calculus course, and it is called the mean-value theorem. The error formula

$$
f(x)-p_{n}(x)=\frac{1}{(n+1)!}(x-a)^{n+1} f^{(n+1)}\left(c_{x}\right)
$$

can be considered a generalization of the mean-value theorem.

EXAMPLE: $f(x)=e^{x}$

For general $n \geq 0$, and expanding e^{x} about $x=0$, we have that the degree n Taylor polynomial approximation is given by

$$
p_{n}(x)=1+x+\frac{1}{2!} x^{2}+\frac{1}{3!} x^{3}+\cdots+\frac{1}{n!} x^{n}
$$

For the derivatives of $f(x)=e^{x}$, we have

$$
f^{(k)}(x)=e^{x}, \quad f^{(k)}(0)=1, \quad k=0,1,2, \ldots
$$

For the error,

$$
e^{x}-p_{n}(x)=\frac{1}{(n+1)!} x^{n+1} e^{c_{x}}
$$

with c_{x} located between 0 and x. Note that for $x \approx 0$, we must have $c_{x} \approx 0$ and

$$
e^{x}-p_{n}(x) \approx \frac{1}{(n+1)!} x^{n+1}
$$

This last term is also the final term in $p_{n+1}(x)$, and thus

$$
e^{x}-p_{n}(x) \approx p_{n+1}(x)-p_{n}(x)
$$

Consider calculating an approximation to e. Then let $x=1$ in the earlier formulas to get

$$
p_{n}(1)=1+1+\frac{1}{2!}+\frac{1}{3!}+\cdots+\frac{1}{n!}
$$

For the error,

$$
e-p_{n}(1)=\frac{1}{(n+1)!} e^{c_{x}}, \quad 0 \leq c_{x} \leq 1
$$

To bound the error, we have

$$
\begin{gathered}
e^{0} \leq e^{c_{x}} \leq e^{1} \\
\frac{1}{(n+1)!} \leq e-p_{n}(1) \leq \frac{e}{(n+1)!}
\end{gathered}
$$

To have an approximation accurate to within 10^{-5}, we choose n large enough to have

$$
\frac{e}{(n+1)!} \leq 10^{-5}
$$

which is true if $n \geq 8$. In fact,

$$
e-p_{8}(1) \leq \frac{e}{9!} \doteq 7.5 \times 10^{-6}
$$

Then calculate $p_{8}(1) \doteq 2.71827877$, and $e-p_{8}(1) \doteq$ 3.06×10^{-6}.

FORMULAS OF STANDARD FUNCTIONS

$$
\begin{array}{r}
\frac{1}{1-x}=1+x+x^{2}+\cdots+x^{n}+\frac{x^{n+1}}{1-x} \\
\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\cdots+(-1)^{m} \frac{x^{2 m}}{(2 m)!} \\
+(-1)^{m} \frac{x^{2 m+2}}{(2 m+2)!} \cos c_{x} \\
\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots+(-1)^{m-1} \frac{x^{2 m-1}}{(2 m-1)!} \\
\\
+(-1)^{m} \frac{x^{2 m+1}}{(2 m+1)!} \cos c_{x}
\end{array}
$$

with c_{x} between 0 and x.

OBTAINING TAYLOR FORMULAS

Most Taylor polynomials have been bound by other than using the formula

$$
\begin{array}{r}
p_{n}(x)=f(a)+(x-a) f^{\prime}(a)+\frac{1}{2!}(x-a)^{2} f^{\prime \prime}(a) \\
+\cdots+\frac{1}{n!}(x-a)^{n} f^{(n)}(a)
\end{array}
$$

because of the difficulty of obtaining the derivatives $f^{(k)}(x)$ for larger values of k. Actually, this is now much easier, as we can use Maple or Mathematica. Nonetheless, most formulas have been obtained by manipulating standard formulas; and examples of this are given in the text.

For example, use

$$
\begin{aligned}
e^{t}=1+t+\frac{1}{2!} t^{2}+ & \frac{1}{3!} t^{3}+\cdots+\frac{1}{n!} t^{n} \\
& +\frac{1}{(n+1)!} t^{n+1} e^{c_{t}}
\end{aligned}
$$

in which c_{t} is between 0 and t. Let $t=-x^{2}$ to obtain

$$
\begin{array}{r}
e^{-x^{2}=1-x^{2}+\frac{1}{2!} x^{4}-\frac{1}{3!}} x^{6}+\cdots+\frac{(-1)^{n}}{n!} x^{2 n} \\
+\frac{(-1)^{n+1}}{(n+1)!} x^{2 n+2} e^{-\xi_{x}}
\end{array}
$$

Because c_{t} must be between 0 and $-x^{2}$, we have it must be negative. Thus we let $c_{t}=-\xi_{x}$ in the error term, with $0 \leq \xi_{x} \leq x^{2}$.

