CALCULATION OF FUNCTIONS

Using hand calculations, a hand calculator, or a computer, what are the basic operations of which we are capable? In essence, they are addition, subtraction, multiplication, and division (and even this will usually require a truncation of the quotient at some point). In addition, we can make logical decisions, such as deciding which of the following are true for two real numbers a and b :

$$
a>b, \quad a=b, \quad a<b
$$

Furthermore, we can carry out only a finite number of such operations. If we limit ourselves to just addition, subtraction, and multiplication, then in evaluating functions $f(x)$ we are limited to the evaluation of polynomials:

$$
p(x)=a_{0}+a_{1} x+\cdots a_{n} x^{n}
$$

In this, n is the degree (provided $a_{n} \neq 0$) and $\left\{a_{0}, \ldots, a_{n}\right\}$ are the coefficients of the polynomial. Later we will discuss the efficient evaluation of polynomials; but for now, we ask how we are to evaluate other functions such as $e^{x}, \cos x, \log x$, and others.

TAYLOR POLYNOMIAL APPROXIMATIONS

We begin with an example, that of $f(x)=e^{x}$ from the text. Consider evaluating it for x near to 0 . We look for a polynomial $p(x)$ whose values will be the same as those of e^{x} to within acceptable accuracy.

Begin with a linear polynomial $p(x)=a_{0}+a_{1} x$. Then to make its graph look like that of e^{x}, we ask that the graph of $y=p(x)$ be tangent to that of $y=e^{x}$ at $x=0$. Doing so leads to the formula

$$
p(x)=1+x
$$

Continue in this manner looking next for a quadratic polynomial

$$
p(x)=a_{0}+a_{1} x+a_{2} x^{2}
$$

We again make it tangent; and to determine a_{2}, we also ask that $p(x)$ and e^{x} have the same "curvature" at the origin. Combining these requirements, we have for $f(x)=e^{x}$ that

$$
p(0)=f(0), \quad p^{\prime}(0)=f^{\prime}(0), \quad p^{\prime \prime}(0)=f^{\prime \prime}(0)
$$

This yields the approximation

$$
p(x)=1+x+\frac{1}{2} x^{2}
$$

We continue this pattern, looking for a polynomial

$$
p(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}
$$

We now require that

$$
p(0)=f(0), \quad p^{\prime}(0)=f^{\prime}(0), \quad \cdots, p^{(n)}(0)=f^{(n)}(0)
$$

This leads to the formula

$$
p(x)=1+x+\frac{1}{2} x^{2}+\cdots+\frac{1}{n!} x^{n}
$$

What are the problems when evaluating points x that are far from 0 ?

TAYLOR'S APPROXIMATION FORMULA

Let $f(x)$ be a given function, and assume it has derivatives around some point $x=a$ (with as many derivatives as we find necessary). We seek a polynomial $p(x)$ of degree at most n, for some non-negative integer n, which will approximate $f(x)$ by satisfying the following conditions:

$$
\begin{aligned}
p(a) & =f(a) \\
p^{\prime}(a) & =f^{\prime}(a) \\
p^{\prime \prime}(a) & =f^{\prime \prime}(a) \\
& \vdots \\
p^{(n)}(a) & =f^{(n)}(a)
\end{aligned}
$$

The general formula for this polynomial is

$$
\begin{array}{r}
p_{n}(x)=f(a)+(x-a) f^{\prime}(a)+\frac{1}{2!}(x-a)^{2} f^{\prime \prime}(a) \\
+\cdots+\frac{1}{n!}(x-a)^{n} f^{(n)}(a)
\end{array}
$$

Then $f(x) \approx p_{n}(x)$ for x close to a.

TAYLOR POLYNOMIALS FOR $f(x)=\log x$

In this case, we expand about the point $x=1$, making the polynomial tangent to the graph of $f(x)=\log x$ at the point $x=1$. For a general degree $n \geq 1$, this results in the polynomial

$$
\begin{array}{r}
p_{n}(x)=(x-1)-\frac{1}{2}(x-1)^{2}+\frac{1}{3}(x-1)^{3} \\
+\cdots+(-1)^{n-1} \frac{1}{n}(x-1)^{n}
\end{array}
$$

Note the graphs of these polynomials for varying n.

