BINARY INTEGERS

A binary integer x is a finite sequence of the digits 0 and 1, which we write symbolically as

$$x = (a_m a_{m-1} \cdots a_2 a_1 a_0)_2$$

where I insert the parentheses with subscript $()_2$ in order to make clear that the number is binary. The above has the decimal equivalent

$$x = a_m 2^m + a_{m-1} 2^{m-1} + \dots + a_1 2^1 + a_0$$

For example, the binary integer $x = (110101)_2$ has the decimal value

$$x = 2^5 + 2^4 + 2^2 + 2^0 = 53$$

The binary integer $x = (111 \cdots 1)_2$ with m ones has the decimal value

$$x = 2^{m-1} + \dots + 2^1 + 1 = 2^m - 1$$

DECIMAL TO BINARY INTEGER CONVERSION

Given a decimal integer x we write

$$x = (a_m a_{m-1} \cdots a_2 a_1 a_0)_2$$

= $a_m 2^m + a_{m-1} 2^{m-1} + \dots + a_1 2^1 + a_0$

Divide x by 2, calling the quotient x_1 . The remainder is a_0 , and

$$x_1 = a_m 2^{m-1} + a_{m-1} 2^{m-2} + \dots + a_1 2^0$$

Continue the process. Divide x_1 by 2, calling the quotient x_2 . The remainder is a_1 , and

$$x_2 = a_m 2^{m-2} + a_{m-1} 2^{m-3} + \dots + a_2 2^0$$

After a finite number of such steps, we will obtain all of the coefficients a_i , and the final quotient will be zero.

Try this with a few decimal integers.

EXAMPLE

The following shortened form of the above method is convenient for hand computation. Convert $(11)_{10}$ to binary.

In this, the notation $\lfloor b \rfloor$ denotes the largest integer $\leq b$, and the notation $2\sqrt{n}$ denotes the quotient resulting from dividing 2 into n. From the above calculation, $(11)_{10} = (1011)_2$.

BINARY FRACTIONS

A binary fraction x is a sequence (possibly infinite) of the digits 0 and 1:

$$x = (.a_1a_2a_3\cdots a_m\cdots)_2 = a_12^{-1} + a_22^{-2} + a_32^{-3} + \cdots$$

For example, $x = (.1101)_2$ has the decimal value

$$x = 2^{-1} + 2^{-2} + 2^{-4}$$

= .5 + .25 + .0625 = 0.8125

Recall the formula for the geometric series

$$\sum_{i=0}^{n} r^{i} = \frac{1 - r^{n+1}}{1 - r}, \quad r \neq 1$$

Letting $n
ightarrow \infty$ with |r| < 1, we obtain the formula

$$\sum_{i=0}^{\infty} r^i = rac{1}{1-r}, \quad |r| < 1$$

Using this,

$$(.0101010101010) \cdots)_2 = 2^{-2} + 2^{-4} + 2^{-6} + \cdots \\ = 2^{-2} \left(1 + 2^{-2} + 2^{-4} + \cdots \right)$$

which sums to the fraction 1/3.

Also,

$$(.11001100110011 \cdots)_2$$

= 2⁻¹ + 2⁻² + 2⁻⁵ + 2⁻⁶ + ...

and this sums to the decimal fraction $0.8 = \frac{8}{10}$.

DECIMAL TO BINARY FRACTION CONVERSION

In

$$\begin{array}{rcl} x_1 &=& (.a_1a_2a_3\cdots a_m\cdots)_2 \\ &=& a_12^{-1}+a_22^{-2}+a_32^{-3}+\cdots \end{array}$$

we multiply by 2. The integer part will be a_1 ; and after it is removed we have the binary fraction

$$\begin{array}{rcl} x_2 &=& (.a_2a_3\cdots a_m\cdots)_2 \\ &=& a_22^{-1}+a_32^{-2}+a_42^{-3}+\cdots \end{array}$$

Again multiply by 2, obtaining a_2 as the integer part of $2x_2$. After removing a_2 , let x_3 denote the remaining number. Continue this process as far as needed.

For example, with $x = \frac{1}{5}$, we have

$$x_1 = .2;$$
 $2x_1 = .4;$ $x_2 = .4$ and $a_1 = 0$
 $2x_2 = .8;$ $x_3 = .8$ and $a_2 = 0$
 $2x_3 = 1.6;$ $x_4 = .6$ and $a_2 = 1$

Continue this to get the pattern

$$(.2)_{10} = (.00110011001100 \cdots)_2$$

ADDITION TABLE

+	1	10	11	100	101
1	10	11	100	101	110
10	11	100	101	110	111
11	100	101	110	111	1000
100	101	110	111	1000	1001
101	110	111	1000	1001	1010

MULTIPLICATION TABLE

X	1	10	11	100	101
1	1	10	11	100	101
10	10	100	110	1000	1010
11	11	110	1001	1100	1111
100	100	1000	1100	10000	10100
101	101	1010	1111	10100	11001