Setup Classification of actions Example and future directions

Hopf actions on path algebras

Ryan Kinser ¹ Chelsea Walton ²

¹University of Iowa

 ^{2}MIT

Maurice Auslander Distinguished Lectures and International Conference, 2015 Reference: arXiv:1410.7696 **Notation:** A a \Bbbk -algebra, H a Hopf algebra.

Hopf action: Say H acts on A if A is an H-module such that both

- multiplication $A \otimes A \rightarrow A$
- inclusion of scalars $\mathbb{k} \to A$

are *H*-module morphisms.

Classical case: If *H* is a group algebra $\mathbb{k}[G]$, this is equivalent to *G* acting on *A* by automorphisms.

Remark: "Hopf action" can also be defined element-wise, generalizing the definition of "group action" as:

$$g \cdot (ab) = (g \cdot a)(g \cdot b)$$
 and $g \cdot 1_A = 1_A$

It is not as easy/intuitive to construct Hopf actions as group actions.

Meta-problem: When does *A* admit an action of *H*?

Some types of results:

- Obstructions to existence of actions. For example:
 An action of semi-simple H on commutative domain A must factor through a group algebra if char k = 0 [Etingof-Walton].
- Construct examples of actions.
- ▶ Parametrize all actions of some class of *H*s on class of *A*s.

Today's Hopf algebras: *H* a Taft algebra T(n) $(n \ge 2)$

Features: Generators g, x.

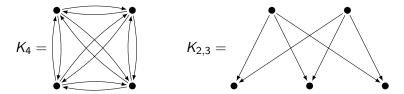
- Relations $g^n = 1$, $x^n = 0$, $gx = \zeta xg$.
- ▶ g must act on A by an order n automorphism.
- x must act on A by nilpotent g-derivation.
- Sufficiently non-classical: neither commutative nor cocommutative.

Remark: Our results extend to Frobenius-Lusztig kernel $u_q(\mathfrak{sl}_2)$ and Drinfeld double D(T(n)).

Today's \Bbbk -algebras: $A = \Bbbk Q$ is a path algebra of a quiver with no loops or parallel arrows.

Observation: To admit T(n) action, Q must at least admit \mathbb{Z}_n -action.

Examples: Complete quiver K_m and complete bipartite quiver $K_{m,m'}$ for m, m'|n.



Strategy to classify actions of H = T(n) on $A = \Bbbk Q$: Identify class of Q which is:

- Small enough that we can explicitly describe all H-actions on each kQ in the class;
- ► Large enough to build all actions on arbitrary *Q* from this class.

Definition: Let Q be any quiver with \mathbb{Z}_n action. A \mathbb{Z}_n -component of Q is a maximal \mathbb{Z}_n -stable subquiver of Q which is isomorphic to a subquiver of some K_m or $K_{m,m'}$.

Proposition: Every quiver with \mathbb{Z}_n -action can be uniquely decomposed into union of \mathbb{Z}_n -components.

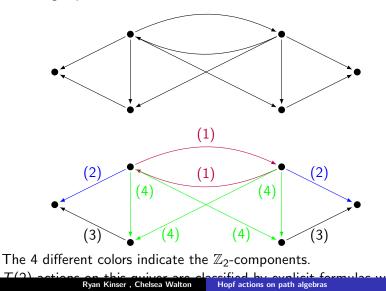
Theorem: T(n)-actions on $\mathbb{k}Q$ are in bijection with (compatible) collections of T(n)-actions on the path algebras of the \mathbb{Z}_n -components of Q.

Two more theorems give: Explicit classification of T(n)-actions on subquivers of K_m and $K_{m,m'}$.

Roughly: 1 parameter for each arrow, each orbit of vertices, and each orbit of arrows, subject to compatibility conditions. (Please see arXiv:1410.7696 for details.)

Setup Classification of actions Example and future directions

The quiver below has \mathbb{Z}_2 -action by left-right reflection and switching top two arrows.



Further results: We also classify all actions of $u_q(\mathfrak{sl}_2)$, and certain actions of D(T(n)), on $\mathbb{k}Q$.

Some future directions:

- Expand class of H (other quantum groups or pointed Hopf algebras)
- Expand class of A (remove restrictions on Q, other finite dimensional algebras)
- Study invariant algebra A^H and smash product algebra A # H