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We present a system of ordinary differential equations (ODEs) capable of reproducing simultaneously the
aggregated behavior of changes in water storage in the hillslope surface, the unsaturated and the satu-
rated soil layers and the channel that drains the hillslope. The system of equations can be viewed as a
two-state integral-balance model for soil moisture and groundwater dynamics. Development of the
model was motivated by the need for landscape representation through hillslopes and channels orga-
nized following stream drainage network topology. Such a representation, with the basic discretization
unit of a hillslope, allows ODEs-based simulation of the water transport in a basin. This, in turn, admits
the use of highly efficient numerical solvers that enable space–time scaling studies. The goal of this paper
is to investigate whether a nonlinear ODE system can effectively replicate observations of water storage
in the unsaturated and saturated layers of the soil. Our first finding is that a previously proposed ODE
hillslope model, based on readily available data, is capable of reproducing streamflow fluctuations but
fails to reproduce the interactions between the surface and subsurface components at the hillslope scale.
However, the more complex ODE model that we present in this paper achieves this goal. In our model,
fluxes in the soil are described using a Taylor expansion of the underlying storage flux relationship.
We tested the model using data collected in the Shale Hills watershed, a 7.9-ha forested site in central
Pennsylvania, during an artificial drainage experiment in August 1974 where soil moisture in the unsat-
urated zone, groundwater dynamics and surface runoff were monitored. The ODE model can be used as
an alternative to spatially explicit hillslope models, based on systems of partial differential equations,
which require more computational power to resolve fluxes at the hillslope scale. Therefore, it is appro-
priate to be coupled to runoff routing models to investigate the effect of runoff and its uncertainty prop-
agation across scales. However, this improved performance comes at the expense of introducing two
additional parameters that have no obvious physical interpretation. We discuss the implications of this
for hydrologic studies across scales.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Recent studies on the modeling of streamflow response to rain-
fall forcing using distributed hydrological models have revealed that
model error decreases with increasing river basin scale [1,3,5,21].
This effect has been attributed to the averaging of errors in the dis-
tributed rainfall inputs and the attenuation effect of flows due to
river routing [21,18]. However, the impact of that model structural
error at the hillslope scale in determining errors as the river network
aggregates flows is less understood. The contrasting results
obtained in modeling catchments of different sizes motivate the
investigation of the role of hillslope-model structure on error prop-
agation across scales. An investigation of this nature requires the
ability to address simultaneously the issue of fluxes draining out
from millions of hillslopes (e.g., a 50,000 km2 basin is constituted
of approximately 1 million hillslopes according to [11]) and the dif-
ficulty of creating a hillslope scale model structure flexible enough
to represent the complex dynamics that can occur at such scales.
As a first step in this investigation, we develop and test in this paper
a system of ordinary differential equations (ODEs) capable of repli-
cating the integral behavior of water in the unsaturated and satu-
rated soil layer in a hillslope as well as the behavior of the surface
runoff. Our goal is to demonstrate that the dynamics described by
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the ODE system are comparable to the dynamics described by a
more complex partial differential equation (PDE) description of
the system. This is important because several studies have demon-
strated that spatially explicit models of hillslope processes, when
properly parameterized, can capture simultaneously variations in
the surface and dynamics of water in the soil [14,23]. However,
the computational demands of simulating large areas (� 105 km2)
while preserving a sub-hillslope partitioning required by these
models becomes a practical limitation. ODEs, on the other hand,
can be solved very efficiently using parallel integrators [25].

Duffy [6] suggested (but has not tested) that using an integral-
balance model for soil moisture and groundwater dynamics can
yield comparable results. In this context, our goal is to address two
open-ended questions raised by Duffy [6] related to the ability of
simple low-dimensional models to capture the essential hydrologic
processes involved based on a terrain averaging approach and inte-
gral-balance: (i) What should be considered an appropriate scale of
aggregation? and (ii) Could low dimensional ODE models provide
numerical results comparable to those obtained by more complex
PDE-based models? If yes, to what kind of hydrologic data are these
results relevant? Can they, for example, reproduce the dynamics of
the water in the channel, the dynamics of groundwater, or both?

With regard to the first question, while we have not studied the
issue in a systematic manner, we considered the hillslope scale
proposed by Gupta and Wymire [12] to be an appropriate scale
to describe the lumped behavior of the system. Specifically, we
used data collected in The Shale Hills watershed, a 7.9-ha forested
site in central Pennsylvania, during a comprehensive experiment
on the role of soil moisture and runoff during the 1970s [17] (see
description in Section 2) and show that ODE-based hillslope-scale
models are able to reproduce certain aspects of water dynamics.

To address the second question, we use two ODE-based models
that account for the interactions between atmospheric inputs and
landscape properties, including soil, and their implications for the
runoff transport dynamics (Section 3). Given that the Shale Hills
watershed data set was used in previous studies [23] to examine
the ability of the spatially explicit PIHM model, it constitutes an
ideal test case to determine the extent to which ODE-based models
can reproduce the behavior of water movements in a first order
watershed. Numerical simulations and comparison with data, pre-
sented in Section 3.1, show that a simple model [4] with a param-
eterization based on commonly available data is skillful enough to
reproduce streamflow fluctuations at the outlet of the basin, but it
is not capable of correctly reproducing the dynamics of the surface
and subsurface water interactions. By contrast, the more complex
ODE-based nonlinear model developed here (see Sections 3.3 and
4) is indeed capable of achieving the same level of accuracy
obtained by PDE-based models presented in the literature
[15,23]. The price for the improved performance is the introduction
of two parameters that have no obvious physical interpretations.

Results of our ODE model are just an intermediate, but never-
theless essential, piece of information that will be later integrated
into a larger project. To this end, our longer-term goal is to deter-
mine whether or not a complex hillslope model is a necessary
condition for accurate simulations of streamflow fluctuations in
larger basins (>100 km2). Our most recent experiences in simulat-
ing streamflow fluctuations across multiple scales suggest that the
answer is ‘‘no.’’ We return to these questions in Section 5 with con-
clusions of the work and a discussion of future directions.
2. Description of data and site information

The Shale Hills watershed is a 7.9-ha (19.8-acre) forested site in
central Pennsylvania. It was the subject of a comprehensive exper-
iment on the role of soil moisture and runoff during the 1970s [17].
Steep slopes and narrow ridges typical of the valley and ridge prov-
ince characterize this first-order drainage basin. The permeable
forest soils are uniform in thickness with an average depth of
1.4 m [16]. Underlying the soil is a thick shale bedrock with inter-
bedded limestone, which is thought to have low permeability [16].

A relatively detailed description of the Shale Hills field experi-
ment that was conducted during the year 1974 can be found in
[23]. We focus here exclusively on the data from a shorter time
interval, 31 days in the month of August. The data were collected
at the outlet weir (flow values in m3/s) and other three weirs, and
at 40 piezometers, 40 neutron access probes for soil moisture dis-
tributed along the hillslope. Then, storage of soil moisture and sat-
urated groundwater changes were estimated during a series of
artificial rainfall experiments (see Table 1 based on data from
[13]). A spray irrigation network was implemented to allow for a
control on the irrigation events. During the month of August 1974,
six equal artificial rainfall events of about pðtÞ ¼ 6:4 mm=h for 6 h
were applied below the tree canopy, while some other natural rain
events occured during the month. (This natural precipitation will
also be included in the ODE modeling process.) The six controlled
rain events were applied to the entire watershed [23] during the
following days and starting with the following hours: 8/1/1974 at
6:45 AM (t ¼ 405 min), 8/7/1974 at 7:15 AM (t ¼ 9075 min),
8/14/1974 at 7:15 AM (t ¼ 19155 min), 8/19/1974 at 7:15 AM
(t ¼ 26355 min), 8/23/1974 at 8:30 AM (t ¼ 32190 min), and
8/27/1974 at 7:45 AM (t ¼ 37905 min). See [13] and Appendix A
for more details on data. Note that our selection of units in the
vertical and horizontal (time) axes in the figures was made to
facilitate the comparison with results by Qu and Duffy [23].
3. Modeling of the hillslope-river channel coupling

The model is a system of four ODEs that account for the interac-
tions between atmospheric inputs and landscape properties and
their implication with respect to the runoff transport dynamics.
We acknowledge that, by working with an ODE framework, the
hillslope-channel coupling physical processes are simplified in
description (as all variables account only for spatially averaged
variables and processes). Nevertheless, this formulation is advanta-
geous because it allows for a systematic investigation of how dif-
ferent fluxes involved in the runoff production and runoff
transport contribute to the ultimate dynamics of the water in the
channel. We take advantage of existing soil and runoff data in a
one-month experiment in the Shale Hills watershed in order to test
this ODE-based approach and to show that it captures the most rel-
evant aspects of the dynamical evolution of the system.

Four physical control volumes are considered: (1) the water
that is ponded, but still mobile, in the hillslope surface, which will
either infiltrate into the soil matrix or drain as surface runoff, (2)
the unsaturated portion of the soil matrix; (3) the corresponding
saturated portion and, lastly; (4) the water stored in the channel
link that drains the entire hillslope area (see Fig. 1). The soil matrix
is assumed to have a finite capacity, and the unsaturated and sat-
urated zone control volumes are therefore dynamic in size. Fluxes
among these four control volumes are limited to Qp;l and Qp;u from
ponded to the channel link and to the unsaturated zone, respec-
tively, Qu;s the flux exchange between the unsaturated and satu-
rated zones and Qs;l subsurface runoff into the channel link.
3.1. An initial attempt: a calibration-free integral-balance ODE system
fails to reproduce the soil moisture data, at hillslope-scale

In our quest for the construction of an ODE model at
the hillslope-scale that is completely free of calibration, we have
initially considered the model introduced in [4]. This system of



Table 1
(Columns C1–C5): Soil data from the Shale Hills experiment during the month of August 1974 [13]; (Columns C6–C8): Time (in minutes) and the averaged values of both north
and south slopes data, calculated in meters – 0:0254ðC2þ C3Þ=2 and 0:0254ðC4þ C5Þ=2 respectively.

Time (h) Saturated storage (in) Unsaturated moisture (in) Time (min) �104 Hillslope average

North South North South Saturated storage (m) Unsaturated moisture (m)

12.25 9.13 6.21 11.36 9.01 0.074 0.19 0.26
33.50 9.50 3.81 11.53 9.81 0.201 0.17 0.27
57.50 9.53 1.23 11.38 10.54 0.345 0.14 0.28

105.50 8.40 1.36 11.96 10.85 0.633 0.12 0.29
129.50 8.01 0.70 11.94 11.02 0.777 0.11 0.29
156.75 9.66 11.24 11.45 7.11 0.941 0.27 0.24
182.50 9.81 6.82 11.41 9.10 1.095 0.21 0.26
207.00 9.05 4.40 11.64 9.94 1.242 0.17 0.27
277.50 7.83 2.09 12.21 11.05 1.665 0.13 0.30
301.50 7.81 1.75 11.94 11.11 1.809 0.12 0.29
326.00 12.22 14.19 10.87 6.36 1.956 0.34 0.22
350.00 12.07 6.83 10.94 9.24 2.100 0.24 0.26
374.00 10.74 4.18 11.46 9.85 2.244 0.19 0.27
422.00 9.13 2.29 11.75 10.74 2.532 0.15 0.29
446.50 10.96 14.32 11.31 5.62 2.679 0.32 0.21
472.50 11.72 7.24 11.20 8.88 2.835 0.24 0.25
496.50 10.48 3.78 11.53 10.26 2.979 0.18 0.28
520.50 9.76 2.83 11.87 10.80 3.123 0.16 0.29
544.00 13.92 15.61 9.42 4.27 3.264 0.38 0.17
569.00 13.03 8.28 10.35 8.14 3.414 0.27 0.23
615.00 9.98 4.00 11.71 10.18 3.690 0.18 0.28
638.00 13.61 15.48 10.03 4.49 3.828 0.37 0.18
687.50 12.21 6.87 10.82 8.46 4.125 0.24 0.24

Fig. 1. Conceptual model.
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ordinary differential equations is also based on the physical
properties of the hillslope-channel coupling and has all its parameters
determined from digital elevation models (DEM), geological maps
and some theoretical considerations. Moreover, when simulated
for large-scale river networks, it shows good approximation of flow
data [4].

Given that the model from [4] is not the focus of our paper, and
to ensure completion, we only summarize its equations below and
list its fluxes and parameter values in Appendix B

dsp

dt
¼ c7ðp� ep � qpl � qpuÞ;

dv
dt
¼ c8ðqpu � qus � eunsatÞ;

da
dt
¼ c8ðqus � qsl � esatÞ;

dðqQrÞ
dt

¼ KQ qk1 �qQ r þ qinQ r þ c4ðqpl þ qslÞ
� �

:

ð1Þ
The variables are: sp the surface ponding water in (mm);
v ¼ vw-unsat=AH the average storage of soil moisture in (m);
a ¼ vw�sat=AH the average saturated soil storage in (m); and qQr is
the channel discharge measured in (m3/s). Here Qr ¼ 1 m3=s is a
normalization constant; AH is the hillslope area; t represents the
time measured in minutes; and KQ is the river network transport
constant.

Note that the volume of water in the unsaturated layer of soil
depends on the dimensionless soil volumetric water content h
through the formulation vw-unsat ¼ hv s-unsat ¼ hhbaP , where aP is
the permeable area and hb is the effective soil depth. Likewise, var-
iable a depends on the water table hw according to the formula

a ¼ vw�sat=AH ¼ v s�sat=AH ¼ hbPðhw�hb
Hh
Þ. where P is a third degree

polynomial with coefficients derived from DEM (see Appendix B)
and Hh is the hillslope relief. The fluxes from the equations (all
are expressed in ‘‘per unit area’’ units) stand for: qpl is the flux from
the surface to the channel, in (mm/h); qpu is the flux from surface to
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soil, in (mm/h); qus is the flux from the unsaturated layer to the sat-
urated zone, in (mm/h); and qsl is the flux from the saturated layer
to the channel, in (mm/h); pðtÞ is precipitation in (mm/h); and
epðtÞ; esatðtÞ; eunsatðtÞ are the evaporation rates from the surface,
the saturated layer and the unsaturated layer, in (mm/h). An
important observation is that the system (1) fails to reproduce at
a reasonable level the soil moisture data when applied to the local,
hillslope-scale; see Fig. 2 for a comparison of the numerical simu-
lation and data in the Shale Hills watershed.

Fig. 2 shows that the model is able to reproduce channel dis-
charge at the outlet with reasonable accuracy but fails to represent
soil dynamics between the saturated and unsaturated layers. This
limitation arises mainly from the fact that the model does not
account for soil dynamic thresholds that are evident in the
observed data. The first threshold can be identified on the unsatu-
rated portion of the soil. There seems to be a maximum value of
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Fig. 2. Numerical simulations of system (1) and comparison with the Shale Hills
watershed data for flow qQ r measured in (m3=min), and water level in the
unsaturated and saturated zones, in (m).
unsaturated water volume (0.3 m) that activates the flow from
the unsaturated to the saturated layer – see also Table 1. Another
threshold is in the saturated portion of the soil that presents a min-
imum water table close to 0.1 meters. These thresholds are not
well understood and are difficult to estimate in the absence of soil
data.

Consequently, we are still in need of a nonlinear (calibration-
free to the maximum extent) ODE model that corrects the observed
errors and that can still be easily included in simulations of
increasing river basin scale. This goal is achieved through system
(2) and (3) described below.
3.2. A new formulation: an integral-balance ODE system that captures
the soil moisture data at hillslope-scale

This nonlinear ODE model assumes four variables sp; v; a and q
(summarized in Table 2) that change with respect to time, which is
measured in minutes. In terms of fluxes, the system is defined as

dðspAHÞ
dt

¼ ð1� EðtÞÞAH pðtÞ � Q p;l � Q p;u;

dðvw-unsatÞ
dt

¼ dðbvAHÞ
dt

¼ Q p;u � Q u;s;

dðvw-satÞ
dt

¼ dðbaAHÞ
dt

¼ Q u;s � Q s;l � Qevap;

sdðqQ rÞ
dt

¼ qk1 �qQ r þ qinQ r þ Q p;l þ Qs;l

� �
;

ð2Þ

where AH is the total hillslope area, pðtÞ is the precipitation input in
(mm/h) and EðtÞ represents the percentage of total (incoming)
water loss due to rapid evaporation from the surface or interception
by vegetation. The flux Qevap accounts for the potential loss of
groundwater through evaporation or plant consumption or both.

The runoff transport in the channel that drains the hillslope is
modeled by the non-linear reservoir equation that was derived
by Mantilla [19] and based on previous works by Gupta and
Waymire [12], Reggiani et al. [24] and Menabde and Sivapalan
[22]. Here the changes in water mass in a channel link are
determined by incoming fluxes from upstream channel-links
(qin), the lateral runoff from the hillslope (overland flow Q p;l and
groundwater flow from the saturated zone Q s;l) and the outgoing
discharge Q. Therefore, the variable q is defined as q ¼ Q=Qr where
Qr ¼ 1 m3=s is the unit reference discharge. The incoming flux qin is
either zero (for first-order drainage basins, as is the case for the
Shale Hills watershed) or it represents the sum of surface fluxes
from the incoming channel-links qin ¼

P
j2UpstreamðqÞQ jðtÞ=Q r .

Note that in order to account for heterogeneities in the soil
matrix that make certain portions inaccessible to water, such as
the space occupied by tree roots, an adjustment coefficient b is
introduced. Thus, the volume of water in the unsaturated and sat-
urated zones are defined by vw-unsat ¼ bðhvunsatÞ and vw�sat ¼ bv sat

where h 2 ½0;1� represents the volumetric water content (soil
moisture). The variables a and v are strongly linked because of
the finite storage capacity of the hillslope. We assume an effective
soil depth hb over the total hillslope area AH such that the total vol-
ume of the hillslope is Vtot ¼ hbAH . Given the high density of tree
roots in the Shale Hills watershed, we note that the total volume
of the hillslope effectively available for water is only a percentage
of Vtot , say VT ¼ bVtot ¼ bhbAH with b 2 ð0;1�. The saturated zone aI

is a percentage of the total hillslope area, and it can be defined as
aI ¼ âAH with 0 6 â 6 1. Then, the volume of the saturated zone is
vsat ¼ aIhb. With notation a ¼ âhb, we obtain that the volume of
water in the saturated zone is vw�sat ¼ bvsat ¼ baAH and a can take
only values between zero and hb. Similarly, with notation
v ¼ hð1� âÞhb, the volume of water in the unsaturated zone is
vw-unsat ¼ bðhvunsatÞ ¼ bhðVtot � v satÞ ¼ bvAH and 0 6 v 6 hb � a.



Table 2
Variables of the nonlinear ODE model.

Variable Unit Definition Physical interpretation

sp m sp ¼ vw-ponded=AH The volume per unit hillslope area of water stored in the ground surface, or ponded water

v m v ¼ hvunsat=AH The volume per unit hillslope area of moisture content in the unsaturated zone

a m a ¼ vsat=AH The volume per unit hillslope area of the saturated zone

q None q ¼ Q=Qr The flow going downstream out of the channel at time t. Q is the runoff at the outlet (in m3/s) and Qr is the unit reference
discharge, Qr ¼ 1 m3=s
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3.3. Definition of the nonlinear ODE model

The nonlinear model for the local runoff-production and runoff-
transport consists of four ODEs that result from (2) with fluxes
defined by Table 3. This is

dsp

dt
¼ ½1� EðtÞ�c3 pðtÞ

� c1 spða� ares þ v � v resÞ � c1 sp½hb � ða� aresÞ � ðv � v resÞ�

b
dv
dt
¼ c1 sp ½hb � ða� aresÞ � ðv � v resÞ�

� d0ðv � v resÞ þ d1ðv � v resÞða� aresÞ2 þ d2ða� aresÞ2
h i

b
da
dt
¼ d0ðv � v resÞ þ d1ðv � v resÞða� aresÞ2 þ d2ða� aresÞ2
h i

ð3Þ

� c2 ða� aresÞ exp aN
a� ares

hb

� �
� cevap ða� aresÞ

s dq
dt
¼ qk1

�
qin � qþ cc1 sp ða� ares þ v � v resÞ

þcc2 ða� aresÞ exp aN
a� ares

hb

� ��

with parameters b;hb; ares;v res;d0;d1, d2; k1;aN and function EðtÞ as
in Table 4 and c1; c2; c3; cevap; c; s defined indirectly according to
the formulas

c1 ¼
Ksp

60hb
ðm�1 min�1Þ; c2 ¼

10�6 asoil KSAT ð2LÞ
60AH

ðmin�1Þ;

c3 ¼
10�3

60
ðno unitÞ; cevap ¼

Kevap

60
ðmin�1Þ;

c ¼ 106 AH

60Qr
ðm�1 minÞ; s ¼ ð1� k1ÞL

60v r ðAupstream=ArÞk2
ðminÞ:

ð4Þ

The hillslope reference area Ar ¼ 1 km2 is a normalization constant
that we introduced with the goal of adjusting certain physical units.
The parameter s is the scale-dependent residence time for the chan-
nel discharge (in minutes), and it equals the inverse of the river net-
work transport constant, s ¼ K�1

Q [19]. Scale dependency is
established here by the upstream area, which reflects changes in
the hydraulic geometry in the downstream direction. We will dem-
onstrate later in the paper that, at the scales considered here, the
Table 3
Definition of fluxes in the nonlinear ODE model.

Formula Physical inte

Qp;l ¼ c1 AHspða� ares þ v � vresÞ Flux from p

Qp;u ¼ c1 AHsp½hb � ða� aresÞ � ðv � vresÞ� Flux from p

Qu;s ¼ AH ½d0ðv � vresÞ þ d1ðv � vresÞða� aresÞ2 þ d2ða� aresÞ2� Flux exchan

Qs;l ¼ c2 AH ða� aresÞ exp aN
a�ares

hb

� 	
Flux for sub

Qevap ¼ cevap AH ða� aresÞ Flux for the
effect of the attenuation in the channel is negligible compared to
the effects of hillslope dynamics.

A justification of the particular mathematical description of
fluxes Qp;l; Q p;u; Qs;l and Q evap is included in C. However, we
explain here the mathematical basis for our choice of Qu;s, the flux
between the unsaturated and saturated zones.

Since the interaction between the two volumes of water vunsat

and v sat is not static (on the contrary, it is obtained through a mov-
ing interface), we anticipate that higher nonlinearities may play an
important role. Assuming everywhere a local interaction between
the two layers of water in the soil, we take the entire hillslope area
AH as sectional area. This, together with a nonlinear velocity
vel ¼ velðv ; aÞ, defines the flux Qu;s as a product, Q u;s ¼ AH velðv; aÞ.

Let us assume velðv; aÞ is a general nonlinear function in vari-
ables a and v such that vel ¼ 0 at the equilibrium point ðares;v resÞ.
Then its Taylor expansion about the equilibrium is velða;vÞ ¼
g10ða� aresÞ þ g01ðv � vresÞ þ g20ða� aresÞ2 þ 2g11ða� aresÞðv � v resÞþ
g02ðv�vresÞ2þg30ða�aresÞ3þ3g21ða�aresÞ2ðv�v resÞþ3g12ða�aresÞ
ðv � v resÞ2 þ g03ðv � v resÞ3 þ � � � with coefficients gij ¼ 1

ðiþjÞ!
@iþj vel
@ia @jv

computed at ðares;v resÞ. Then, the form of the function
vel ¼ velða;vÞ that we use for our model can be interpreted as a
particular choice taken from the class of nonlinear functions that
describe well the flux between the unsaturated and saturated
zones and that could be empirically determined when studying
certain hillslopes.

Here, we adopt a formulation of the velocity similar to Duffy’s
work from [6], and take velða;vÞ ¼ d0ðv � v resÞ þ d1ðv � v resÞ
ða� aresÞ2 þ d2ða� aresÞ2 obtaining Q u;s as in Table 3. Note that
d0; d1; d2 are positive parameters that depend (in a complex
way, not identified in this paper) on properties of the hillslope
and soil. such as the shape of the hillslope (e.g. its convexity), the
soil conductivity and its capillarity.
3.4. Measurable and non-measurable model parameters

An important component of our approach is the goal to reduce,
as much as possible, the number of non-measurable model param-
eters. The parameters are grouped into three main categories (see
Table 4): (i) derivable directly from DEM and geological maps; (ii)
derivable from independent empirical observations and (iii)
estimated from local observations of state variables. A detailed
rpretation

onded water to the channel link (surface runoff)

onded water to the unsaturated zone (infiltration)

ge between the unsaturated and saturated zones (recharge)

surface runoff into the channel link (baseflow)

potential loss of groundwater through either evaporation or plant consumption



Table 4
Parameters in the nonlinear ODE model that are: (i) derivable directly from DEM and geological maps; (ii) derivable from independent empirical observations; and (iii) estimated
from local observations of state variables.

Parameter Physical interpretation

Parameters derivable directly from DEM and geological maps
Aupstream Total upstream area determined from DEM with typical values in the interval ½0:01 km2

;106 km2�. Note: Aupstream ¼ AH for order 1 links
AH Total hillslope area determined from DEM with typical values in the interval ð0 km2

;5 km2�
L The channel (link) length determined from DEM with typical values in the interval ½10 m;1000 m�
hb The effective soil depth to the impermeable layer with typical values in the interval ð0 m;0:8 m�. Note: hb incorporates information about the soil porosity

(e.g. for averaged physical soil depth to the bedrock hsd ¼ 1:4 m and porosity p ¼ 0:4, we have hb ¼ hsd � p ¼ 0:56m)

Parameters derivable from independent empirical observations
k1 The nonlinear exponent for flow velocity function-discharge with typical values in the interval ½0:05;0:7�
k2 The nonlinear exponent for flow velocity function-upstream area with typical values in the interval ½�0:4;�0:05�
vr The reference flow velocity, a constant determined from the channel geometry and flow measurement data with typical values in the interval

½0:2 m=s;1 m=s�
KSAT The saturated hydraulic conductivity with typical values in the interval ½10�6 m=h;1m=h�
d0; d1; d2 Parameters that describe the form of the hillslope-scale recharge relation coupling the state variables

Parameters that are estimated from local observations of state variables
ares ; v res The residual storage volumes for the gravity-drained hillslope
b Parameter that accounts for the heterogeneities in the soil matrix porosity and areas inaccessible to water (e.g. portions of soil matrix occupied by tree

roots, gravel, etc); b 2 ð0;1�
aN Parameter that controls the recession
asoil Heterogeneity factor for soil saturated hydraulic conductivity
Ksp Parameter that characterizes the overland flow to the channel and the infiltration to the soil
Kevap ; E Parameters that correspond to the evaporation process and water consumption by vegetation
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explanation of how their values are chosen is given in Section 4.1.
Essentially, in model (3), the majority of the parameter values are
not subject to calibration. Only a subset of parameters (asoil and
Ksp ) still remains unconstrained and has been used in the fitting
of the numerical simulation. The latter are considered to represent
general characteristics of the hillslope. The values of the uncon-
strained parameters are estimated for one event and are to be left
unchanged in any other simulations of the model subject to new
precipitation input patterns. On the other hand, two other param-
eters of the ODE model which are related to evapotranspiration
(Kevap and E) are adjusted for every rain event, but their values
are chosen in accordance with the data to match the observed
water balance (see Section 4.1).
Fig. 3. Simulations of the nonlinear ODE model (3) with parameters and initial
conditions from Section 4.1, and comparison to data from the Shale Hills
experiment for the month of August 1974 ([13]; see also columns 6–8 in Table 1).
4. Numerical simulations and interpretation of the results

We test the nonlinear ODE system using data from the Shale
Hills experiment that was conducted in August 1974 (data
obtained by courtesy of Duffy and collaborators [13]). These data
were previously used to generate and test a multi-process
watershed simulation based on PDE formulation [23] whose
numerical integration, however, poses several difficulties and
requires significant time.

Our goal is to show that the simple ODE system given by (3) can
reproduce data as closely as the PDE model when spatial averaging
is considered along the hillslope. The state variables considered
here are streamflow at the outlet weir (flux q), the total volume
of water in the soil, both in the unsaturated zone (v) and the satu-
rated zone (a). We are particularly interested in simulating the
observed double peak in the hydrograph created after each rainfall
event (See Figs. 3 and 4). The appearance of the double peak in the
ODE model is especially interesting as, at the very least, it provides
an alternative to the hypothesis that the double peak should be the
result of the hillslope’s complex topography. The latter would have
led to different time-delays for the overland or underground flows
on the north and south slopes, respectively, and that could have
presumably been reproduced only by a detailed spatial description
of the hillslope that only a PDE model could achieve. On the
contrary, the appearance of the double peak in the spatially aver-
aged ODE model points to the interaction between the hillslope
overland runoff and the subsurface flow. Those seem to be subject
to a delicate balance in order to produce the double peak.



Fig. 4. Zoom in at peaks 1–6 of the output flow Q ¼ qQ r measured in m3=min,
during the six forced rain events of the Shale Hills experiment of August 1974.
Comparison of data (solid red) and simulated output flow of model (3) with
parameter values and initial conditions from Section 4.1 (solid blue). See also Fig. 3
(second panel). (For interpretation of the references to color in this figure caption,
the reader is referred to the web version of this article.)
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The ODE model can also capture the qualitative and the quanti-
tative dynamics of the underground water and offer a possible
interpretation of how water is redistributed between the saturated
and unsaturated zones in the period between successive rainfall
events (see Fig. 3 (panels 3–4) and Table 1).

4.1. Parameter values and initial conditions

Our aim is to present an ODE model that is not only relevant at
the hillslope scale but that also steers clear of calibration to the
greatest possible extent. With this idea in mind, we determine
the values of parameters Aupstream; AH; L and hb directly from DEM
and geological maps for the Shale Hills watershed [13]; see Table 5.
For example, hb results from calculated averaged soil depth
hsd ¼ 1:4 m of the hillslope and porosity factor p ¼ 0:4 [19,20].

Other parameters are evaluated based on theoretical consider-
ations; we chose the values of parameters k1; k2; vr as indicated
by [19,20], and the values of KSAT and d0; d1; d2 as suggested by
[2,6]. Note, for example, that the ODE model (3) does not show
any significant sensitivity to the values chosen for k1; k2 and v r

in their corresponding range found in [19,20]. The rest of the
parameters are estimated from local observations of state vari-
ables, as follows. The residual values for water in the soil ares and
vres were chosen through a visual inspection of the soil data (see
Table 1 and lower panels from Fig. 3) and indicate a tendency of
the saturated and unsaturated water levels to relax to approxi-
mately the same numbers after the forced rain event passed and
was followed by several days of no precipitation. We chose ares

close to the minimum value for the saturated storage area (column
7) and v res close to the maximum value for the unsaturated area
moisture (column 8) from Table 1 and hypothesized them to be
steady-states for our variables a and v in the ODE model. We say
that ares and v res are the residual storage volumes for gravity-
drained hillslope (determined asymptotically, at zero precipita-
tion). The value for b is chosen based on data analysis in order to
ensure a closed water-balance of the hydrological system (see
Appendix A for more details). The value for aN is determined such
that the model follows the trend of recession in flow data. Then,
only two parameters Ksp , and asoil remained open for calibration
and were used in the fitting of soil and flow data from [13] – see
Table 5 for their determined values.
Table 5
Parameter values used in the numerical simulations of the nonlinear ODE model.

Parameter Value Unit

Parameters derivable directly from DEM and geological maps
Aupstream 0:07736 km2

AH 0:07736 km2

L 420:15 m
hb 0:56 m

Parameters derivable from independent empirical observations
k1 0:25
k2 �0:1
vr 0:66 m=s
KSAT 0:01 m=h
d0 0:00135 min�1

d1 0:016 m�2 min�1

d2 0:0053 m�1 min�1

Parameters that are estimated from local observations of state variables
ares 0:1 m
vres 0:3 m
b 0:12
aN 2:5

Parameters that cannot be estimated a priori
asoil 5:0
Ksp 0:625 h�1



(a)

(b)

(c)

(d)

(e)

(f)

ig. 5. Overland and underground fluxes (per hillslope area unit, Qij=AH; measured
mm/min) determined by simulation of the model (3).
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In addition, the evaporation from the surface (as a fraction) is
taken to vary during the month of August, with higher values at
the beginning and lower values later in the month: EðtÞ ¼ 0:62 if
0 6 t < 5000;0:48 if 5000 6 t < 18;000;0:50 if 18;000 6 t <
25;000;0:48 if 25;000 6 t < 30000;0:51 if 30;000 6 t < 35;000;
0:44 if 35000 6 t < 40;000 and 0:3 if t P 40;000 ([13,10]; see also
A for data analysis that suggests an average 1� EðtÞ ¼ aðtÞ � 0:52
during the precipitation events). On the other hand, the evapora-
tion from the soil (water uptake by plant roots) in the saturated
zone is also taken to vary during the month, with decreasing values
toward the end of it: KevapðtÞ ¼ 0:002 if 0 6 t < 8000, then 0:0005 if
8000 6 t < 15;000, then 0:0001 if 15000 6 t < 30;000 and 0:0 for
t P 30;000.

Our simulations were conducted in XPPAUT [7] using a
Runge–Kutta numerical method with stepsize Dt ¼ 0:05 mins
and then checked for stability of the solution. The initial conditions
were chosen at steady state for soil (spð0Þ ¼ 0 m; að0Þ ¼
0:1 m; vð0Þ ¼ 0:3 m) and based on the Shale Hills data for the flow
at the outlet weir at 12:00 AM on August 1st, 1974
(qð0Þ ¼ Qð0Þ=Qr , dimensionless, corresponding to Qð0Þ ¼ 9:31�
10�5 m3=s). The results of the simulations and a comparison to data
are shown in Fig. 3, where we plot variables v; a (in meters) and
Q ¼ qQr (in units adjusted to m3/min).

4.2. Interpretation of the numerical results

4.2.1. Water dynamics in the soil
Our initial observation is that the data for the saturated and

unsaturated soil is well captured by the ODE model (Fig. 3, panels
3–4). The unsaturated zone experiences an increase in water vol-
ume during each rain event; however, this is followed by a sudden
loss of water due to a fast flow into the saturated zone. This fast flow
pushes the water level v below its equilibrium value v res, while
water in the saturated zone (variable a) rapidly increases above
ares. Between two consecutive rain events, the flux Q u;s decreases
and then changes signs (it becomes negative), which allows for
the redistribution of water in the soil before reducing to zero (see
Fig. 5f for a graph of vel ¼ Qu;s=AH). Both unsaturated and saturated
water levels v; a relax back to their equilibrium values v res; ares,
with an increasing trend for v and a decreasing trend for a (Fig. 3).

Mathematically, these dynamics can be explained through the
presence of the nonlinear terms in the definition of Qu;s (see Table 3).
If, for instance, at the beginning of the rain event the soil was at
equilibrium (v ¼ vres and a ¼ ares) so Q u;s ¼ 0. As Qp;u increases
due to rain, v increases as well (v > vres) but is still in the neighbor-
hood of vres; the higher order terms in Q u;s are negligible by compar-
ison to the linear term d0ðv � vresÞ, so Qu;s starts to increase
(Qu;s > 0). As a consequence, a increases as well, which contributes
to the changes of Q u;s; the greater the increase in a, the faster the
transfer of water from the unsaturated zone to the saturated zone
(according to the quadratic term d2ða� aresÞ2). Thus, Q u;s eventually
balances and overcomes the incoming flux Qp;u from the ponded
water; this leads to a decrease in v that accelerates when rain stops
(when Qp;u ¼ 0) pushing v below its equilibrium level (v < v res). The
cubic term d1ðv � vresÞða� aresÞ2 which is dominant now in the def-
inition of Q u;s takes negative values; consequently, Q u;s slows down
and eventually reverses direction, moving water from the saturated
zone back to the unsaturated zone (Q u;s < 0). Thus, v increases back
to v res while a decreases towards ares.

Note that the ODE model effectively captures the qualitative
and quantitative dynamics of the water levels in the soil (both
unsaturated and saturated). The nonlinear definition of both Qu;s

and Q s;l fluxes contribute significantly to this result. The decaying
slope for a, but also the increasing slope for v, are especially well
adjusted due to the high nonlinearity of function FðxÞ ¼ xeaN x

(see Fig. 5e for Q s;l=AH).
F
in
4.2.2. Overland flow dynamics
The dynamics of the main fluxes involved in the sp-equation are

shown in Fig. 5. As expected, the ponded water sp increases during
each precipitation event and rapidly goes to zero when rain stops;
since fluxes Qp;l and Qp;u depend linearly on sp, they also reach zero



Fig. 6. Fluxes to the link calculated in m3/min: the overland flux from ponded water
Qp;l (solid blue) and the underground flux from the saturated soil Qs;l (solid green).
(For interpretation of the references to color in this figure caption, the reader is
referred to the web version of this article.)
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very fast (Fig. 5(b) and (c)). We call the term EðtÞpðtÞ evaporation
from the ponded water in a more general way, according to the fol-
lowing assumption: the vegetation on the hillslope absorbs a per-
centage E of the precipitation transferred to the ponded water
A

B

C

D

E

Fig. 7. Zoom in at peaks 4 and 5 of the simulated output flow Q ¼ qQr (solid blue) and com
values and initial conditions from Section 4.1 except for Ksp : (A) Ksp ¼ 0:75; (B) Ksp

interpretation of the references to color in this figure caption, the reader is referred to t
reservoir, and the percentage depends on the pre-exiting condi-
tions on the hillslope (for example, air humidity, temperature,
plants’ need for water) so it is variable in time, E ¼ EðtÞ. Therefore,
the term EðtÞpðtÞ contributes to the dynamics of sp only during rain
events, leaving ð1� EðtÞÞpðtÞ as the effective input (Fig. 5a: here
pðtÞ was recalculated in mm/min). The evapo-transpiration term
ðEðtÞpðtÞ þ Q evap=AHÞ is then plotted in Fig. 5(d).
4.2.3. Dynamics of the runoff transport
The relative contribution of the overland flow and the under-

ground flux to the runoff transport is illustrated in Fig. 6. These
graphics correspond to the unit-adjustments to m3/min of two
important fluxes (see system (2) and Table 3): Q p;l ¼
c1 AH sp ða� ares þ v � v resÞ and Qs;l ¼ c2 AH ða� aresÞ exp aN

a�ares
hb

� 	
(Fig. 6; curves in solid blue and solid green, respectively).

Between consecutive rain events, the dynamics of the runoff
transport is governed by the underground flux from the saturated
zone Q s;l, to which Q tends asymptotically. Note that the main
parameter that influences the slope of Q s;l is c2, and in particular
parison with Shale Hills data (solid red). Flow Q is determined using the parameter
¼ 0:625 (same as in Fig. 4); (C) Ksp ¼ 0:50; (D) Ksp ¼ 0:375; (E) Ksp ¼ 0:25. (For
he web version of this article.)
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C

D

E

Fig. 8. Zoom in at peaks 4 and 5 of the simulated output flow Q ¼ qQr (solid blue) and comparison with Shale Hills data (solid red). Flow Q is determined using the parameter
values and initial conditions from Section 4.1 except for asoil: (A) asoil ¼ 3:125; (B) asoil ¼ 5:0 (same as in Fig. 4); (C) asoil ¼ 6:875; (D) asoil ¼ 8:750; (E) asoil ¼ 10:625. (For
interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)
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asoil. On the other hand, during each (6-h long) precipitation event,
Q tends to the sum ðQ p;l þ Q s;lÞ. The rise of Q is initially governed by
Qp;l since sp increases faster than a; at this stage, the main contri-
bution of Qs;l is to set the maximum value that Q tries to reach
rather than to significantly influence the slope of Q. A larger value
of parameter c2 (and so asoil) would raise the peak of Q, while a
smaller value of c2 (asoil) would lower it. (But note that changing
c2 would also affect the slope of Q in the time-interval between
rain events. Therefore, c2 needs to be carefully selected in order
to obtain a reasonable fit for Q in both time-regimes; there is a
trade-off for the best fitting of the runoff transport’s peak versus
its decay).

At the end of the rain event, sp decreases rapidly and drives Qp;l

to zero (see blue curve in Fig. 6) while Qs;l keeps increasing.
Initially, the sum ðQ p;l þ Q s;lÞ (and Q asymptotically) follows the
trend of Q p;l since this term is dominant (Q p;l is quadratic in vari-
ables sp and a while Q s;l is basically linear in a for a in the neighbor-
hood of ares). That sets the initial decaying slope for Q. However,
once the influence of Q p;l fades away (Qp;l � 0), Q tends to Q s;l,
which is close to the end of its increasing phase. The combined
effect is the occurence of a double peak in the dynamics of the run-
off transport (see Figs. 6 and 4 for comparison with data).

Note that numerically, in order to obtain the double peak of Q, a
balanced choice of values for coefficients c1 and c2 is necessary.
Thus, for a given value of c2 (asoilÞ, adjustments to c1 can be made
by an appropriate choice of the parameter Ksp . Fig. 7 depicts snap-
shots of the fourth and fifth peaks in the simulation of the runoff
transport when Ksp varies. If Ksp decreases while asoil is kept fixed
(asoil ¼ 5:0), the first component of the double-peak of Q decreases.
Note that reducing Ksp past a certain value makes it disappear
completely. (The second component of the double-peak seems less
sensitive to Ksp .) On the other hand, we can keep c1 unchanged (i.e.,
Ksp ¼ 0:625) while modifying c2 through the free parameter asoil.
Fig. 8 depicts snapshots of the fourth and fifth peaks in the
simulation of the runoff transport when asoil varies. Note that both
components of the flow double-peak are affected by an increase in
asoil (they both rise), but this time the second component seems to
be the most affected.

The variation of other parameters most probably influences the
dynamics of the ODE system (3), too. However, we leave the careful
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and detailed investigation of the parameter space of (3) and its
associated dynamics for future research.
5. Discussion and conclusions

We developed a system of ordinary differential equations to
reproduce simultaneously the aggregated behavior of changes in
water storage in the hillslope surface and the unsaturated and sat-
urated soil layers. The system of equations can be viewed as a two-
state integral-balance model for soil moisture and groundwater
dynamics [6]. We showed that fluxes between the unsaturated
and saturated soil compartments can be described using a Taylor
expansion of the underlying storage flux relationship. The model
was tested using data collected in the Shale Hills watershed, a
7.9-ha forested site in central Pennsylvania, during an artificial
drainage experiment in August 1974 where soil moisture in the
unsaturated zone, groundwater dynamics and surface runoff were
carefully monitored. Although more recent data is available for the
Shale Hills experimental watershed (see [13]), we chose the 1974
data set because it removes all uncertainty associated with rainfall
inputs from our data analysis and modeling exercise. The artificial
drainage experiment provides the best opportunity to test the sim-
plified assumptions used in our model.

The simplified ODE system given by (3) can reproduce data as
closely as a PDE model (see [23]) when spatial averaging is consid-
ered along the hillslope. The state variables considered were
streamflow at the outlet weir (flux q), the total volume of water
in the soil, both in the unsaturated zone (v) and the saturated zone
(a). We were particularly interested in being able to simulate the
observed double peak in the hydrograph created after each rainfall
event The appearance of the double peak in the ODE model is espe-
cially interesting because, at the very least, it provides an alterna-
tive to the hypothesis that the double peak should be the result of
the hillslope’s complex topography. Our results indicate that the
appearance of the double peak in the spatially averaged ODE model
is a consequence of the interaction between the hillslope overland
runoff and the subsurface flow. Those seem to be in a delicate bal-
ance in order to produce the double peak.

The ODE model can also capture the qualitative and the quanti-
tative dynamics of the underground water and offers a possible
interpretation of how water is redistributed between the saturated
and unsaturated zones between successive rainfall events. In the
present configuration of the model structure, surface runoff is pro-
duced via infiltration excess overland flow, and the dynamical sys-
tem offers an alternative hypothesis to the origin of the first peak
in the hydrograph. Qu and Duffy [23] have argued, ‘‘During most
of the numerical experiment, the soil infiltration capacity is large
enough to accommodate rainfall, and Hortonian flow is of limited
importance except in the upland regions during the fifth and sixth
events. Saturation overland flow occurs at locations where water
table saturates the land surface from below.’’ See Fig. 12 in their
paper. A careful inspection of the well data in the watershed does
not support the conclusion, lending credibility to our model-based
assessment of infiltration excess overland flow. It is necessary to
qualify the extent to which our results apply. For example, the arti-
ficial rainfall applied and the time of the year in which the exper-
iment was performed create a narrow range of hydro-climatic
conditions in which this model is evaluated. Extreme drought or
wet conditions in the soil can give rise to conditions that do not
allow for ODE simplifications.

The approach we take in our paper leaves open the question of
model parametrization (i.e., how are the parameters in the model
related to physical soil properties?). However, the close match pro-
vided by PDE and ODE can become a tool with which to investigate
this issue systematically. In addition, our ODE model can be easily
coupled to a river network transport equation [9,20] to describe
fluxes at the watershed scale, which would allow for a systematic
investigation into how nonlinearities at the hillslope scale propa-
gate producing fluctuations in the streamflow at the outlet of a
watershed. This is the subject of future communications.

Why are these intermediate findings worth reporting? First,
they represent a number of puzzles. Is it generally true that a good
representation of surface and subsurface water dynamics cannot
be achieved using a priori parameter values derived from available
data without calibration? Or is this because our integration scale is
not appropriate? Or, is it that there is something peculiar at this
site that our models fail to capture? Second, while our goal is not
to introduce a new hydrological model, we do want to provide
an ODE-based framework that is flexible enough to simulate the
underlying physical system while preserving the meanings of
fluxes and state variables. We have achieved this, lending support
for continuing the line of research that aims to simplify the
description of a physical process at the hillslope scale of
aggregation.
Appendix A. Water balance

The purpose of this section is to provide our analysis of data col-
lected in Shale Hills during the 1974 artificial drainage experiment.
We deemed this necessary because data itself offers some interest-
ing hydrologic puzzles that needed to be sorted out before pro-
ceeding with the modeling exercise. Our primary modeling
assumption is that the Shale Hills basin is a closed control volume
and, thus, the equation

dSðtÞ
dt
¼ pðtÞ � eðtÞ � qðtÞ ðA:1Þ

holds for any time t. Here, S is the total storage of water in the
catchment, pðtÞ is precipitation, eðtÞ is evaporation and qðtÞ is the
discharge measured at the outlet (Weir 1). Integration of Eq. (A.1)
gives,

DSðtÞ ¼
Z DT

0
pðtÞdt �

Z DT

0
eðtÞdt �

Z DT

0
qðtÞdt: ðA:2Þ

Eq. (A.2) can be directly tested using data collected during the
artificial drainage experiment, which includes rainfall values, sur-
face runoff measured at the basin outlet with a calibrated concrete
weir and changes in the water content in the subsurface using an
array of 44 wells and daily measurements of water content in
the unsaturated zone using neutron probes. We estimated these
variables by averaging the measurements available in the study
area [13]. To estimate water volume in the saturated zone, we con-
vert the water table depths (water table altitude measured by the
piezometers minus the altitude of the bedrock) to volume of water
in the saturated layer by assuming soil porosity equal to 0.4; see
[13]. The volume of water in the unsaturated zone was estimated
based on the 40 neutron probes. Evett and Steiner [8] provide
details about the neutron probe method to measure soil moisture
in the unsaturated zone. After calibration, these instruments pro-
vide the average water content over a vertical soil profile.
Fig. A.9(a) shows graphs of cumulative values of precipitation
and runoff as a function of the accumulation period. Fig. A.9(b)
shows values of DS ¼ SðtÞ � Sð0Þ. The unmeasured component in
the water balance during the experiment is evaporation. Note that
Eq. (A.2) can be rearranged to estimate the total water loss (evap-
oration from subsurface and water losses in the surface). In addi-
tion, we recognize that heterogeneities in the soil matrix porosity
and areas inaccessible to water (e.g., portions of soil matrix occu-
pied by tree roots, gravel, etc.) can change the magnitude of sub-
surface water level fluctuations. We also recognize that
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evaporation from the surface can be a significant portion of the
water entering the soil matrix. In the artificial drainage experi-
ments, water is applied on sunny days, making water captured
by temporary interception zones more likely to evaporate than
during actual precipitation events. We introduce two variables, b
and aðtÞ to account for those two issues and rewrite Eq. (A.2) as,Z DT

0
eðtÞdt ¼

Z DT

0
aðtÞpðtÞdt �

Z DT

0
qðtÞdt � bDSðtÞ: ðA:3Þ

Conversely, if daily evaporation is assumed to be known (e.g.,
4 mm/day), aðtÞ can be derived from data as (i.e., assuming aðtÞ
is constant over the day),

aðtÞ ¼
bDSðtÞ þ

R tþDT 0

t eðtÞdt þ
R tþDT 0

t qðtÞdtR tþDT 0

t pðtÞdt
: ðA:4Þ

The need to introduce b and aðtÞ will become evident as we present
the data analysis.

First, we calculate cumulative evaporation using Eq. (A.3)
assuming aðtÞ ¼ 1 and choosing an arbitrary initial Sð0Þ ¼ 0:35.
Note in Fig. A.9(c) that when b is assumed to be 1, the water
Fig. A.9. (a) Cumulative precipitation and runoff derived from measurements in the
Shale Hills basin, (b) Estimated soil water contents, (c) Estimated evaporation from
the system required to close the water balance with different values of b and (d)
Estimated fraction of water loss aðtÞ assuming a constant evaporation rate of
4.6 mm/day.
balance gives a non-increasing evaporation function. In fact, when
daily evaporation rates are estimated, it yields either negative val-
ues of evaporation or non-realistic positive evaporation values dur-
ing days of large precipitation events. This situation can be
significantly improved if a value of b smaller than 1 is assumed.
In fact, when we assume b on the order of 0.1, we get an average
evaporation rate on the order of 4 mm/day, which is consistent
with evaporation values for the region (4.6 mm/day; see [10]). In
a second step, we relax the assumption that aðtÞ ¼ 1 and calculate
the value needed to close the water balance, assuming that evapo-
ration is constant and equal to 4.6 mm/day. The values of aðtÞ are
shown in Fig. A.9(d). Our analysis leads us to believe that two phys-
ical phenomena combine to explain the variability in data: first,
that there is a significant portion of the soil matrix that is not
accessible to water, leading to large changes in the water table
depth when small rainfall amounts are applied in the system,
and second, that water losses from the surface, either by direct
runoff or evaporation, occur during the application of the artificial
rainfall (here, we take the measured values to be error-free since
going back to the original references gives us confidence that the
measurements are accurate within the range provided by the
instruments).
Appendix B. Fluxes and parameters of a more parsimonious
integral-balance ODE system

The fluxes from system (1) are defined by

qpl ¼ c2
aPRC þ aI

AH
vhsp; qpu ¼

aP

AH
ð1� RCÞ In f Rate;

qus ¼ 103KUNSATh
aP

AH

� �
; qsl ¼ c3v ssat

aI

AH

� �

with parameters, constants and other related formulas listed in
Tables B.6 and B.7.

Parameter values for Lh;AH;Aup; SH;Hh; a; b; c were obtained from
DEM, and hb is equal to the average soil water capacity divided by
the hillslope area. Taking into consideration our discussion in A, hb

is equal to the average soil depth times the soil porosity and the
variable b; MaxInf and KSAT were obtained based on soil datasets
(SSURGO), and n is the Manning roughness coefficient for forested
Table B.6
Shale Hills parameters in model (1) from [4].

Parameter Value Unit Physical interpretation

Aupstream 0:07736019 km2 Upstream area

AH 0:07736019 km2 Hillslope area

Lh 0:4201452 km Channel length
hb 69 mm Effective depth to the impermeable layer
k1 0:25 Discharge exponent for flow velocity
k2 �0:1 Area exponent for flow velocity
v0 0:02 m/s reference velocity
KSAT 0:01 m/h Saturated hydraulic conductivity
KT 1:0 m/h Conductivity for infiltration
Cr 0:4 Channel geometry coefficient
epot 0:2 mm/

h
Potential evaporation

Hh 49:01019 m Hillslope relief
MaxInf 76:2 m=h Maximum infiltration rate
SH 0:11 Hillslope slope
nvh 0:4 Manning coefficient

a 0:0 Parameters a; b; c and d are coefficients
of the third order polynomial that
describes the relationship between the
impermeable area and the water table
(based on the convexity shape of the
hillslope)

b 0:487372
c 2:458623
d �1:94599



Table B.7
Formulas and other important constants in model (1) from [4].

Formula Unit Physical interpretation

dsoilðhÞ ¼ ð1� hÞhb mm Soil deficit

KUNSAT ðhÞ ¼ KSAT ebsoilðh�1Þ m/h Unsaturated hydraulic conductivity

vh ¼ c1ðsp � 10�3Þ2=3 m/h Hillslope velocity

RCðsp; dsoilÞ ¼
spðspþ2dsoilÞ
ðspþdsoilÞ2

� �
no unit Runoff coefficient

In f Rate ¼
MaxInf
if sp > MaxInf

KT sp otherwise

8<
:

mm/h Infiltration

hrelðhwÞ ¼ hw � hb m Relative water depth

aIðhrelÞ ¼ AH aþ b hrel
Hrelmax

� 	
þ c hrel

Hrelmax

� 	2
þ d hrel

Hrelmax

� 	3
� �

km2 The impermeable area

daI
dhrel
ðhrelÞ ¼ AH

Hrelmax
bþ 2c hrel

Hrelmax

� 	
þ 3d hrel

Hrelmax

� 	2
� �

km2
=m The change in impermeable area

aPðaIÞ ¼ AH � aI km2 The permeable area

vssat ðaIÞ ¼ hbaI m3 Volume of soil that is saturated

vsunsat ðvssat Þ ¼ VT � vssat m3 Volume of soil that is unsaturated

vwunsat ðh; vsunsat Þ ¼ hvsunsat m3 Volume of water in the unsaturated layer of soil

Dunsat ¼ 10�3 v sunsat
AH

� 	
mm The average water depth in the unsaturated layer

Dsat ¼ 10�3 vssat
AH

� 	
mm The average water depth in the saturated layer

Constant Unit

Ar ¼ 1 km2

Qr ¼ 1 m3=s

Hrelmax ¼ Hh m

Kq ¼ 60Crv0ðAup=Ar Þk2

ð1:0�k1ÞLh
min�1

VT ¼ 103 hb AH m3

c1 ¼ 3:6�106

nvh

ffiffiffiffiffiffi
SH
p m/h

c2 ¼ ð2 � 10�6Þ LH
AH

m�1

c3 ¼ 103

VT
KSAT SH mm=ðh m3Þ

c4 ¼ 1
3:6 AH ðm3 hÞ=ðs mmÞ

c5 ¼ 106

60
AH
hb

ðm hÞ=min

c6 ¼ 103

60 AH m3 h=ðmin mmÞ

c7 ¼ 1
60

h/min

c8 ¼ 103

60
ðm hÞ=ðmm minÞ
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area. We estimate k1 and k2 based on velocity measurements data
provided by the USGS – see [4] for details. As this dataset does not
comprise data for hillslopes (just for watershed larger than
10 km2), we estimate v0 based on the average hillslope concentra-
tion time (time difference between the peak of rainfall and the
peak of streamflow) and flow path. We recognize that this is not
the most appropriate methodology to estimate v0, since it requires
rainfall and streamflow measurement; therefore, it cannot be
applied to ungauged basins. In other studies, for which
velocity measurement data are available at the appropriate scales
[5], we estimate all velocity parameters solely based on such
measurements.

Evaporation is defined based on potential evaporation and the
amount of water available in the different hillslope storages: sur-
face and soil in the portion of the basin where it is impermeable
(water is easily available) and permeable (evaporation will be a
function of soil volumetric water content). We first estimate
Cp; Cunsat; Csat , which represent the water that would evaporate
from these storages if potential evaporation were infinite. Thus, if
epotðtÞ > 0 then Cp ¼ sp

ð1 hrÞepot
; Cunsat ¼ Dunsath

hb

aP
AH
; Csat ¼ Dsat

hb

aI
AH

.

Otherwise: Cp ¼ Cunsat ¼ Csat ¼ 0. We then correct the values based
on the actual potential evaporation: say CT ¼ Cp þ Cunsat þ Csat; if

CT > 1 then Corr ¼ ðCp þ Cunsat þ CsatÞ�1 and otherwise Corr ¼ 1.
Now we define ep; esat; eunsat , the evaporation rates from the sur-
face, saturated layer and unsaturated layer, in [mm=h] by:
ep ¼ Corr Cp epot ; esat ¼ Corr Csat epot; eunsat ¼ Corr Cunsat epot .

Appendix C. Definition of fluxes in the nonlinear hillslope-link
model

Definition of fluxes Qp;l and Qp;u. Given a precipitation input pðtÞ,
the change in the land surface storage volume depends on the
incoming flux AHpðtÞ minus a total water loss EðtÞ due to rapid
evaporation from the surface or interception by vegetation, and it
is expressed as a percentage from the incoming water (i.e.
�EðtÞAHpðtÞ) and the fluxes Qp;l and Qp;u that move the ponded
water to the channel link (surface runoff) and into the unsaturated
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zone (infiltration), respectively. That means dðAHspÞ=dt ¼
AHdsp=dt ¼ ð1� EðtÞÞAHpðtÞ � Q p;l � Qp;u or, equivalently, dsp=dt ¼
ð1� EðtÞÞc3pðtÞ � 1

AH
ðQ p;l þ Q p;uÞ. The input function pðtÞ is given

in (mm/h), so a dimensionless coefficient c3 is introduced to adjust
the units and is defined by c3 ¼ 10�3=60. Typically, the land surface
storage sp is measured in millimeters ranging from 0 to 1000 mm,
but here we will use meters as the unit for sp. Thus, a typical inter-
val for sp is expected to be ½0 m;1 m�. The fluxes Qp;l and Qp;u need
to be a function of the variables in the system to provide closure
relationships. In order to do this, we make the assumption that,
in the absence of rainfall, the above equation can be modeled as,

dsp

dt
¼ �Ksp sc

p: ðC:1Þ

The assumption of a power law decay is in agreement with
direct observations [26]. Note that Eq. (C.1) can be obtained from
a simple recalculation of an equation of the form

dsp=dt ¼ �bK sp

AHsp

Vtot

� 	c
with coefficient bK sp measured in m� h�1

and total volume Vtot measured in m� km2. Therefore,

Ksp ¼ bK sp ðAH=VtotÞc ¼ bK sp h�c
b would be a recession coefficient mea-

sured in m1�c � h�1.
We also assume that the flux Qp;u is proportional to both the

volume stored on the land surface vw�ponded ¼ AHsp and the

available soil deficit volume vdef
soil ¼ VT � vw�sat � vw-unsat ¼

bAHðhb � a� vÞ So Q p;u is given by the equation:

Qp;u ¼ AH
bK sp

AHsp

Vtot

� 	c
bAHðhb�a�vÞ

VT
¼ Ksp bA2

H
VT

sc
pðhb � a� vÞ. Thus, the

formula for Qp;u becomes Qp;u ¼
Ksp AH

hb
sc

pðhb � a� vÞ.
In order to satisfy Eq. (C.1), the sum of fluxes coming out of the

ponded water during periods of no rain needs to satisfy
1

AH
ðQ p;u þ Q p;lÞ ¼ Ksp sc

p thus Ksp AH

hb
sc

pðhb � a� vÞ þ Q p;l ¼ AHKsp sc
p and

we define Qp;l ¼ Ksp AHsc
p

bAHðaþvÞ
VT

¼ Ksp bA2
H

VT
sc

pðaþ vÞ ¼ Ksp AH

hb
sc

pðaþ vÞ.
We take c ¼ 1 as a first approximation, and we subsequently show
that it is sufficient to simulate overland flow and infiltration. At
this point, we need to take into account the following important
observation about the dynamics of the hydrological system, given
the time-interval of the study (one month or maybe several
months). The above definitions of Qp;u and Qp;l are phenomenolog-
ical, so they should apply during very long periods of time (for
example, centuries). An extended lack of precipitation for such a
long time-interval (pðtÞ ¼ 0) brings the ODE system to a steady
state, with variables a and v tending to zero. However, this is not
really the case with the hydrological system under study, since
even in the complete absence of precipitation (pðtÞ ¼ 0), there is
still residual water in the soil. Therefore, a more reasonable
assumption is to consider non-zero steady states for the variables
a and v, say ares and v res. A shift of variables a and v to their
steady-state values in Q p;u and Q p;l, according to a # a� ares and
v # v � v res, is imposed. This allows us to re-write Qp;u and Q p;l,
as in Table 3, to account for the residual water in the soil.

Definition of flux Q s;l It is defined by the product between the
cross-sectional area ASL ¼ 2� Lhb (where L is the length of the
channel and hb is the effective soil depth) and the velocity
vels ¼ KSATF . The constant KSAT is the saturated hydraulic conduc-
tivity (measured in [m/h]). The function F (dimensionless)
depends on the volume of water in the saturated soil
(vw�sat=VT ¼ baAH=ðbhbAHÞ ¼ a=hb), and it should satisfy F ¼ 0 at
the equilibrium a ¼ ares. Thus, we define F ¼ FðxÞ with
x ¼ ða� aresÞ=hb. In order to account for the original, more compli-
cated geometry of the cross-sectional area between the saturated
soil and the channel, we introduce a correction factor asoil (dimen-
sionless) and have Qs;l ¼ ASL vels ¼ asoil2LhbKSATFðxÞ. A qualitative
analysis of the hydrograph recessions indicate that a linear form
FðxÞ ¼ x is not sufficient to reproduce the complex dynamics of
the flux Q s;l. This is because the hillslope saturated zone has a more
intricate geometry than the rectangular parallelepiped of base-area
AH and height hb that we consider here. Thus, including higher
order nonlinearities in the definition of F seems important, and
we therefore choose a function F that decreases linearly with x
in the neighborhood of the origin (F ¼ OðxÞ as x! 0) but that
otherwise increases exponentially fast with x : FðxÞ ¼ xeaN x. There-
fore, the flux Q s;l is defined by Qs;l ¼ asoil2LhbKSAT

a�ares
hb

exp aN
a�ares

hb

� 	
¼ c2 AH ða� aresÞ exp aN

a�ares
hb

� 	
with coefficient c2

accounting for the units, too.
There is a direct connection between the exponential function

and high degree polynomial given by a Taylor expansion, by recall-
ing that the Taylor expansion of eaN x about the origin is

eaN x ¼
P1

n¼0
an

N
n!

xn. So, obviously, the function FðxÞ can be inter-
preted as an infinite polynomial containing all possible high order
nonlinearities. We do not claim that the same accuracy for fitting
cannot be achieved by a high degree polynomial; however, we pre-
fer to work with the exponential function since it has much more
convenient mathematical properties.

Definition of flux Qevap We also account for potential loss of
groundwater through evapotranspiration by introducing a flux
Qevap proportional to the volume of water in the saturated zone,
Qevap ¼ KevapAHða� aresÞ. Here, Kevap is a very small recession coef-
ficient measured in (h�1) so Q evap ¼ cevap AH ða� aresÞ with coeffi-
cient cevap defined by (4).
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