Defn: Let f: R™* — R™.
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Defn: Suppose f : R! — R! is differentiable at a. Then
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Defn: The gradient of f is denoted by
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Defn: The Jacobian matriz of f at a is
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Defn: Suppose f : R' — R! is differentiable at a. Then
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Defn: Suppose A C R™, f: A — R™.

f is said to be differentiable at a point a if there exists an
open ball V such that a € V C A and a linear function T" such
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ifferentiable at a implies f is continuous at a.

Thm: Let £ : RE — B f = (f1, ..., fm). [ is differentiable at
aiff f; : R® — R is differentiable at a for alli =1,...,m

Thm: If f is differentiable at.a then -a—f?'— exists for all ¢,7 and
-1« Df(a) = the Jacobian evaluated at a.
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2.4

Thm: If f,g : R® — R™ is differentiable at a, then f + g is
differentiable at a and D(f + ¢g) = Df + Dg.

Thm: Let ¢ € R. If f: R® — R™ is differentiable at a, then ¢f
is differentiable at a and D{(cf) = cD/f.

_ﬁ(g(\l))

Thm: If ¢ : R® — R™ is differentiable at a and if f : R™ —
RF is differentiable at g(a), then f o g is differentiable at a and

D(fo a) =
(f g)( ) DI( ( ))aDg( L»:y mu/-é/,o/rCo—f/oV!

Note for the product and quotient rule, f, g are real-valued func-
I LS

Thm: If f,g R" s differentiable af a, then fg is differen-
tiable at a and D(fg) = =g(a)Df(a) + f a)Dg( ).

vector Ve for

Thm: If g(a) # 0 and f,g : R" s differentiable at a, then
f/g is differentiable at a and D(f/g) = 9(a)Df (g)(a)f (a)Dg(a)
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