Defn: Let $f: \mathbf{R}^n \to \mathbf{R}^m$.

$$\frac{\partial f_i}{\partial x_j}(\mathbf{a}) = \lim_{h \to 0} \frac{f_i(a_1, \dots, a_{j-1}, a_j + h, a_{j+1}, \dots, a_n) - f_i(a_1, \dots, a_{j-1}, a_j, a_{j+1}, \dots, a_n)}{h}$$

$$= \lim_{h \to 0} \frac{f_i(\mathbf{a} + h\mathbf{e_j}) - f_i(\mathbf{a})}{h}$$

Defn: Suppose $f: \mathbf{R}^1 \to \mathbf{R}^1$ is differentiable at a. Then

$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = f'(a)$$

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = f'(a)$$

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} - f'(a) = 0$$

$$\lim_{x \to a} \frac{f(x) - f(a) - f'(a)(x - a)}{(x - a)} = 0$$

$$\lim_{x \to a} \frac{f(x) - f(a) + f'(a)(x - a)}{(x - a)} = 0$$

y = f'(a)[x - a] + f(a) is the linear approximation of f near a. $\int y = f(a) + f'(a) (x - a) = -t \text{ angent linear } a$ $\approx f(x) \text{ near } a$

Defn: The gradient of f is denoted by

$$\nabla f(\mathbf{a}) = \left(\frac{\partial f_1}{\partial x_1}(\mathbf{a}), ..., \frac{\partial f_1}{\partial x_n}(\mathbf{a})\right)$$

Defn: The $Jacobian \ matrix \ of \ f \ at \ a$ is

$$Df(\mathbf{a}) = \left(\frac{\partial f_i}{\partial x_j}(\mathbf{a})\right)_{m \times n} = \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(\mathbf{a}) & \dots & \frac{\partial f_1}{\partial x_n}(\mathbf{a}) \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \frac{\partial f_m}{\partial x_1}(\mathbf{a}) & \dots & \frac{\partial f_m}{\partial x_n}(\mathbf{a}) \end{pmatrix}$$

Defn: Suppose $f: \mathbf{R}^1 \to \mathbf{R}^1$ is differentiable at a. Then

$$\lim_{h\to 0} \frac{f(a+h) - f(a) - f'(a)h}{h} = 0$$

$$\lim_{x \to a} \frac{f(x) - f(a) - f'(a)(x - a)}{(x - a)} = 0$$

Defn: Suppose $A \subset \mathbf{R}^n$, $f: A \to \mathbf{R}^m$.

f is said to be **differentiable at a point a** if there exists an open ball V such that $a \in V \subset A$ and a linear function T such that

$$\lim_{\mathbf{h}\to\mathbf{0}} \frac{||f(\mathbf{a}+\mathbf{h}) - f(\mathbf{a}) - T(\mathbf{h})||}{||\mathbf{h}||} = 0$$

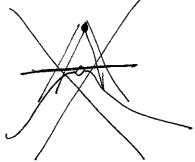
near
$$\vec{a}$$

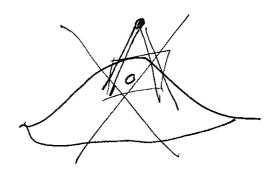
$$\lim_{\mathbf{x}\to\mathbf{a}} \frac{||f(\mathbf{x}) - f(\mathbf{a}) - T(\mathbf{x} - \mathbf{a})||}{||\mathbf{x} - \mathbf{a}||} = 0$$

$$f(\vec{\mathbf{x}}) \approx f(\vec{\mathbf{a}}) + T^3(\vec{\mathbf{x}} - \vec{\mathbf{a}}) \approx tangen to the proximate for approximate for a period $\vec{\mathbf{x}}$.$$

tangent plane $f: \mathbb{R}^2 \to \mathbb{R}$ $f(\vec{x}) \approx f(\vec{a}) + Df(\vec{a}) (\vec{x} - \vec{a})$ fangent (hyper) plane

Thm: f is differentiable at \mathbf{a} implies f is continuous at \mathbf{a} .





Thm: Let $f: \mathbf{R}^{\underline{n}} \to \mathbf{R}^{(m)}, f = (f_1, ..., f_m)$. f is differentiable at \mathbf{a} iff $f_i: \mathbf{R}^n \to \mathbf{R}$ is differentiable at \mathbf{a} for all i=1,...,m

Thm: If f is differentiable at a then $\frac{\partial f_i}{\partial x_j}$ exists for all i, j and $Df(\mathbf{a}) = \text{the Jacobian evaluated at } \mathbf{a}.$

Thm: Let $f: \mathbf{R}^n \to \mathbf{R}^m$, $f = (f_1, ..., f_m)$. If $\frac{\partial f_i}{\partial x_j}$ exists and are continuous in a neighborhood of a for all i, j, then f is differentially

Ex: Is $f(x,y) = x^2y$ differentiable at (3, 1)? Yes $\int f(x,y) = (2xy) \quad \chi^2 \quad \frac{\partial f(x,y)}{\partial x} = 2xy \quad \text{is cont}$ Let $f(x,y) = 2xy \quad \frac{\partial f(x,y)}{\partial y} = \chi^2 \quad \text{is cont}$ Where $f(x,y) = x^2y \quad \text{is cont}$ The find the equation of the tangent plane to $f(x,y) = x^2y$ at (3, 1).

 \mathbb{Z} Estimate f(3.1, .9)

$$fangent plane f(x,y) = x^{2}y$$

$$af(3,1)$$

$$2 = f(\vec{a}) + Df(\vec{a}) (\vec{x} - \vec{a})$$

$$Df(x,y) = (2xy, x^{2})$$

$$Df(3,1) = (6,9)$$

$$2 = f(3,1) + (6,9) (xy) - (3)$$

$$= f(3,1) + (6,9) (x-3) (y-1)$$

$$= 9 + 6(x-3) + 9(y-1)$$

$$= 9 + 6x-18 + 9y - 9$$

$$fangent plane f(x,y) = x^{2}y$$

$$= f(3,1) + (6,9) (x-3) (y-1)$$

$$= 9 + 6(x-18 + 9y - 9)$$

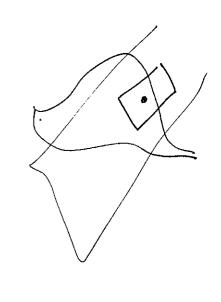
$$= 9 + 6x-18 + 9y - 9$$

$$f(3.1, .9) \approx$$

$$6(3.1) + 9(.9) - 18$$

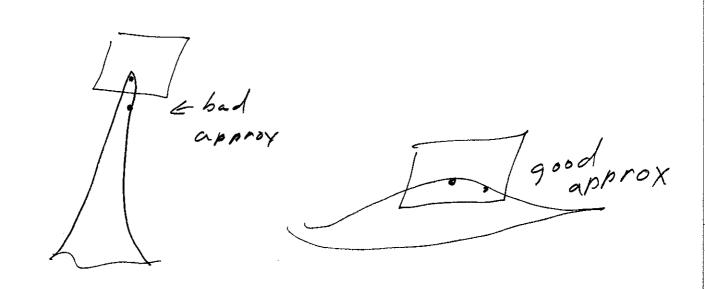
$$= 18.6 + 8.1 - 18$$

$$= 8.7$$



$$f(x,y) = x^2 y$$

 $f(3.13,.9) = (3.1)^2(.9) = 8.649$



Thm: If $f,g: \mathbf{R}^n \to \mathbf{R}^m$ is differentiable at \mathbf{a} , then f+g is differentiable at **a** and D(f+g) = Df + Dg.

Thm: Let $c \in \mathbf{R}$. If $f: \mathbf{R}^n \to \mathbf{R}^m$ is differentiable at **a**, then cfis differentiable at **a** and D(cf) = cDf.

f(g(x1)

Thm: If $g: \mathbf{R}^n \to \mathbf{R}^m$ is differentiable at \mathbf{a} and if $f: \mathbf{R}^m \to \mathbf{R}^m$ 2.5 \mathbf{R}^k is differentiable at $g(\mathbf{a})$, then $f \circ g$ is differentiable at \mathbf{a} and $D(f \circ g)(\mathbf{a}) = Df(g(\mathbf{a}))Dg(\mathbf{a}).$ matrix multiplication

Note for the product and quotient rule, f, g are real-valued functions, NOT vector valued. $\mathcal{R}^n \to \mathcal{R}^m$ $\mathcal{L}: \mathcal{R}^n \to \mathcal{R}$

f:RM=Rm

Thm: If $f, g: \mathbb{R}^n$ (R) is differentiable at \mathbf{a} , then fg is differentiable at a and $D(\underline{fg}) = \underline{g(\mathbf{a})}\underline{Df(\mathbf{a})} + f(\mathbf{a})Dg(\mathbf{a}).$ rector

Thm: If $g(\mathbf{a}) \neq 0$ and $f, g: \mathbf{R}^n \rightarrow \mathbf{R}$ is differentiable at \mathbf{a} , then f/g is differentiable at **a** and $D(f/g) = \frac{g(\mathbf{a})Df(\mathbf{a}) - f(\mathbf{a})Dg(\mathbf{a})}{g(\mathbf{a})^2}$.

$$f(x,y) = (x^{2}, y)$$

$$g(x,y) = (y \ln x), 5$$

$$f(x,y) + g(x,y) = (x^{2} + y \ln x, y + 5)$$

$$Df(x,y) = \begin{pmatrix} 2 \cdot x & 0 \\ 0 & 1 \end{pmatrix}$$

$$D(x,y) = \begin{pmatrix} y/x & \ln x \\ 0 & 0 \end{pmatrix}$$

$$D(x,y) = \begin{pmatrix} 2x + y/x & 0 + \ln x \\ 0 + 0 & 1 + 0 \end{pmatrix}$$

$$D(x,y) = 5 Df = 5 \begin{pmatrix} 2x & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 10x & 0 \\ 0 & 5 \end{pmatrix}$$

 $5f(x,y) = (5x^2, 5y)$

$$f(x,y) = (SIN(x+y), X^{2}y^{3})$$

$$g(x,y) = (e^{xy}, ln(x^{2}+y))$$

$$fg(x,y) = (SIN(x+y)e^{xy}, x^{2}y^{3}ln(x^{2}+y))$$

$$Dfg(x,y) = (cos(x+y)e^{xy} + ye^{xy}sin(x+y))$$

(05 (x+y) 6" + 5111(x+y) 6"x $3 \times^2 y^2 A_1(x^2y) + x^2 \frac{3}{x^2} \frac{1}{x^2}$ 2×93/(x2y) + x²/_x 3/_x x/_x x/ 169(xy) = /(cos(x+y) exy+yexy) = (xy) 67)

(6x) 60 (6x)++(6x)+0 (6x) = (((6+x) 507 ((6+x) 507) 6x) (63), 2 SIN (X+4) exx f, (x,y) = sm (x+y), 9, (x,y) = (exy), $((t_{9}))$

+ SM (x+y) (4exy xex)