1.) Let $f(x) = \frac{x}{x+2}$. Calculate the following. Simplify your answer.

i.)
$$f(x+3) = \frac{x+3}{x+5}$$

$$f(x+3) = \frac{x+3}{x+3+2} = \frac{x+3}{x+5}.$$

ii.)
$$f^{-1}(x) = \frac{2x}{1-x}$$

$$y = \frac{x}{x+2}$$

Switch x and y: $x = \frac{y}{y+2}$

Solve for y: x(y+2) = y

$$xy + 2x = y$$

$$2x = y - xy$$

$$2x = y(1-x)$$

$$y = \frac{2x}{1-x}$$

- iii.) State the domain of f: $\mathcal{R} \{-2\}$
- iv.) State the range of f: $\mathcal{R} \{1\}$

Note range of $f = \text{domain of } f^{-1}$. Hence your answer to iv.) will depend on your answer to ii.) We will grade iv.) based on your answer to ii.)

v.) Is f one-to-one? \underline{Yes}

Since the inverse exists, it must be one-to-one.

2.) Match the following functions to their graphs:

a.)
$$y = e^x - 1$$

$$b.) y = ln(x-1)$$

c.)
$$y = e^{-x} - 1$$

d.)
$$y = cos(x - \frac{\pi}{2})$$

d.)
$$y = cos(x - \frac{\pi}{2})$$
 e.) $y = sin(x + \frac{\pi}{2})$

f.)
$$y = \sqrt{x+1}$$

3.) Circle T for true and F for false.

6i.) If f is a function, the f(s+t) = f(s) + f(t). F

6ii.) If f is a one-to-one function, the $f^{-1}(x) = \frac{1}{f(x)}$. F

6iii.) If a > 0 and b > 0, ln(a + b) = ln(a)ln(b)F