$$a^{x}a^{y} = a^{x+y}$$

$$(a^{x})^{y} = a^{xy}$$

$$(ab)^{x} = a^{x}b^{x}$$
Ex: $2^{8}5^{6} =$

$$y = a^{x}$$

$$y = a^{x}$$
Suppose $f(x) = a^{x}$

$$y = a^{x}$$
Find f^{-1}
Switch x and y : $a^{y} = x$

$$\log_{a}x = y \text{ iff } a^{y} = x$$

$$f^{-1}(f(x)) =$$

$$\log_{a}x + \log_{a}y = \log_{a}(xy)$$

$$\log_{a}x - \log_{a}y = \log_{a}y$$

Note: $log_a x + log_a y \neq log_a (x + y)$

3.7

By the chain rule $[(x^2 + 1)^9]' = 9(x^2 + 1)^8(2x)$

Or in other words,
$$\frac{d[(x+1)^9]}{dx} = 9(x^2+1)^8(2x)$$

Or in other words, if we let $u = x^2 + 1$, then

$$\frac{du}{dx} = u' = 2x$$
 and

$$[(x+1)^9]' = [u^9]' = 9u^8u' = 9(x^2+1)^8(2x)$$

Or in other notation,

$$\frac{d[(x+1)^9]}{dx} = \frac{d[u^9]}{dx} = 9u^8 \frac{du}{dx} = 9(x^2+1)^8 (2x)$$

We can use the chain rule to calculate a derivative using implicit differentiation.

Ex: Find the slope of the tangent line to $x^2 + y^2 = 1$ at the point $(x, y) = (\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}})$.

Long method (without using implicit differentiation):

Solve for y:

$$x^{2} + y^{2} = 1$$
 implies $y^{2} = 1 - x^{2}$ implies $y = \pm \sqrt{1 - x^{2}}$

Since the y-value of the point $(x,y)=(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}})$ is negative, we are interested in the bottom half of the circle:

$$y = -\sqrt{1 - x^2} = -(1 - x^2)^{\frac{1}{2}}$$

To find slope of the tangent line, take derivative:

$$\frac{dy}{dx} = -\frac{1}{2}(1-x^2)^{\frac{-1}{2}}(-2x) = \frac{x}{\sqrt{1-x^2}}$$

Hence when $x = \frac{1}{\sqrt{2}}$, then the slope of the tangent line is

$$\frac{\frac{1}{\sqrt{2}}}{\sqrt{1 - (\frac{1}{\sqrt{2}})^2}} = \frac{\frac{1}{\sqrt{2}}}{\sqrt{1 - (\frac{1}{2})}} = \frac{\frac{1}{\sqrt{2}}}{\sqrt{\frac{1}{2}}} = \frac{\sqrt{\frac{1}{2}}}{\sqrt{\frac{1}{2}}} = 1$$

We can instead use implicit differentiation:

Note that y is a function of x for the bottom half of the circle: $y = f(x) = -(1 - x^2)^{\frac{1}{2}}$

Thus to find the derivative of y^2 we can use the chain rule:

$$\frac{d(y^2)}{dx} = 2y \cdot \frac{dy}{dx} = 2(-(1-x^2)^{\frac{1}{2}}) \cdot \frac{x}{\sqrt{1-x^2}} = -2x$$

Note
$$y^2 = [-(1-x^2)^{\frac{1}{2}}]^2 = 1-x^2$$

However, we don't need the above to find the slope of the tangent line to the unit circle at the point $(x, y) = (\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}})$. Instead:

Shorter method for finding this slope of the tangent line to $x^2 + y^2 = 1$ at the point $(x, y) = (\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}})$.

We have $x^2 + y^2 = 1$, and we want to find slope $= \frac{dy}{dx}$

Take the derivative with respect to x of both sides:

$$\frac{d(x^2 + y^2)}{dx} = \frac{d(1)}{x}$$

$$2x + 2y \cdot \frac{dy}{dx} = 0$$

$$2y \cdot \frac{dy}{dx} = -2x$$

$$\frac{dy}{dx} = \frac{-x}{y}$$

Hence the slope of the tangent line to the unit circle at the point $(x,y)=(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}).$

$$\frac{dy}{dx} = \frac{-x}{y} = \frac{-\frac{1}{\sqrt{2}}}{-\frac{1}{\sqrt{2}}} = 1$$

Suppose $2x^2y - 3y^2 = 4$. First find y':

Easiest method is to use implicit differentiation. Take derivative (with respect to x) of both sides.

$$\frac{d}{dx}(2x^2y - 3y^2) = \frac{d}{dx}(4)$$

$$4xy + 2x_{\bullet}^2y' - 6yy' = 0$$

Solve for y' (note this step is easy as one can factor y' from some terms. Observe that this will always be the case):

$$y'(2x^2 - 6y) = -4xy$$

$$y' = \frac{-4xy}{2x^2 - 6y} = \frac{-2(2xy)}{-2(3y - x^2)} = \frac{2xy}{3y - x^2}$$

Hence
$$y' = \frac{2xy}{3y - x^2}$$

3.7: Related Rates

1.) A pebble dropped into a pond makes a circular wave that travels outward at a rate 0.4 meters per second. At what rate is the area of the circle increasing 2 seconds after the pebble strikes the pond?

 $\frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) \frac{1}{2} = \frac{1}{2} \frac{$ 0) Picture 1) What is the problem? What do we need to find when t=2sec

2) Need an egn moolving A

 $A = TT^2$

3) Simplify (Sometimes) often don't need to 3) Take the derivative since need dt A = II Tdt = T2T. dr dt 4) Plug in values for when t=2 dr = 0.4 m/sec T = (0, 4m)(25eC) = 0.8mSince dr/dt = constant

 $\frac{dA}{dt} = 2\pi r \frac{dr}{dt}$ $= 2\pi (0.8m) \left(\frac{0.4m}{sec}\right)$ $= 0.64\pi m^{2}/sec$

•

÷

maintained at 10 miles. Suppose plane W is north of a radio tower and moving south while plane G is east of the same radio tower. If plane G is moving east at 1 mile/second, how fast should plane W be moving when plane G is 6 miles from the radio tower? G Im/sec G 1) What do we heed to find $\frac{dy}{dt} = ?$ when X = 62) Equation involving $\frac{1}{y^2 + x^2} = \frac{10^2}{10^2}$ 3,4) Take Derivative

2.) Suppose the distance between two planes must be

$$2y\frac{dx}{dt} + 2x \cdot \frac{dx}{dt} = 0$$

$$yy' + xx' = 0$$
Need y' when $x = 6$

$$6iven \frac{dx}{dt} = x' = 1 mile / sec$$

$$y^2 + x^2 = 10^2$$
when $x = 6$: $y^2 + 36 = 100$

$$y' = 8$$

$$y' = 6$$

$$y' = -6$$

De Plane Wis 1 since moring moving South at 3 miles/sec/If moring west

2.) Suppose car A is 110 miles north of an intersection and traveling south at 50 mph. Suppose car B is 100 miles east of the same intersection and traveling west at 20 mph. 1a.) At what rate are the cars approaching each

other after 1 hour? 1b. After 3 hours?

2) Eqn involving
$$r$$

$$x^{2} + y^{2} = r^{2}$$
Derivative: $2 \times \frac{dx}{dt} + 2y \frac{dy}{dt} = 2r \frac{dx}{dt}$

$$\frac{dx}{dt} = -20 \qquad \frac{dy}{dt} = -50$$
a) $t = 1$

$$x = 80 \qquad y = 60 \qquad r = \sqrt{-1}$$

$$y = \frac{100}{20.100}$$