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Chapter 1

Logic and Sets

1.1. Logical connectives
1.1.1. Unambiguous statements. Logic is concerned first of all with

the logical structure of statements, and with the construction of complex
statements from simple parts. A statement is a declarative sentence, which
is supposed to be either true or false.

A statement must be made completely unambiguous in order to be judged
as true or false. Often this requires that the writer of a sentence has es-
tablished an adequate context which allows the reader to identify all those
things referred to in the sentence. For example, if you read in a narrative:
“He is John’s brother,” you will not be able to understand this simple as-
sertion unless the author has already identified John, and also allowed you
to know who “he” is supposed to be. Likewise, if someone gives you direc-
tions, starting “Turn left at the corner,” you will be quite confused unless
the speaker also tells you what corner and from what direction you are sup-
posed to approach this corner.

The same thing happens in mathematical writing. If you run across the
sentence x2 ≥ 0, you won’t know what to make of it, unless the author
has established what x is supposed to be. If the author has written, “Let x
be any real number. Then x2 ≥ 0,” then you can understand the statement,
and see that it is true.

A sentence containing variables, which is capable of becoming an an
unambiguous statement when the variables have been adequately identi-
fied, is called a predicate or, perhaps less pretentiously, a statement-with-
variables. Such a sentence is neither true nor false (nor comprehensible)
until the variables have been identified.

It is the job of every writer of mathematics (you, for example!) to strive
to abolish ambiguity. The first rule of mathematical writing is this: any

1
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symbol you use, and any object of any sort to which you refer, must be ad-
equately identified. Otherwise, what you write will be meaningless or in-
comprehensible.

Our first task will be to examine how simple statements can be combined
or modified by means of logical connectives to form new statements; the
validity of such a composite statement depends only on the validity of its
simple components.

The basic logical connectives are and, or, not, and if...then. We con-
sider these in turn.

1.1.2. The conjunction and. For statements A and B, the statement
“A and B” is true exactly when both A and B are true. This is convention-
ally illustrated by a truth table:

A B A and B
t t t
t f f
f t f
f f f

The table contains one row for each of the four possible combinations
of truth values of A and B; the last entry of each row is the truth value of
“A and B” corresponding to the given truth values of A and B.

For example:

• “Julius Caesar was the first Roman emperor, and Wilhelm II was
the last German emperor” is true, because both parts are true.
• “Julius Caesar was the first Roman emperor, and Peter the Great

was the last German emperor” is false because the second part is
false.
• “Julius Caesar was the first Roman emperor, and the Seventeenth

of May is Norwegian independence day.” is true, because both parts
are true, but it is a fairly ridiculous statement.
• “2 < 3, and π is the area of a circle of radius 1” is true because

both parts are true.

1.1.3. The disjunction or. For statements A and B, the statement “A
or B” is true when at least one of the component statements is true. Here is
the truth table:
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A B A or B
t t t
t f t
f t t
f f f

In everyday speech, “or” sometimes is taken to mean “one or the other,
but not both,” but in mathematics the universal convention is that “or” means
“one or the other or both.”

For example:

• “Julius Caesar was the first Roman emperor, or Wilhelm II was the
last German emperor” is true, because both parts are true.
• “Julius Caesar was the first Roman emperor, or Peter the Great was

the last German emperor” is true because the first part is true.
• “Julius Caesar was the first Chinese emperor, or Peter the Great

was the last German emperor.” is false, because both parts are false.
• “2 < 3, or π is the area of a circle of radius 2” is true because the

first part is true.

1.1.4. The negation not. The negation “not(A)” of a statement A is
true when A is false and false when A is true.

A not(A)
t f
f t

Of course, given an actual statement A, we do not generally negate it
by writing “not(A).” Instead, we employ one of various means afforded by
our natural language.

Examples:

• The negation of “ 2 < 3” is “ 2 ≥ 3”.
• The negation of “Julius Caesar was the first Roman emperor.” is

“Julius Caesar was not the first Roman emperor.”
• The negation of “I am willing to compromise on this issue.” is I am

unwilling to compromise on this issue.”

1.1.5. Negation combined with conjunction and disjunction. At this
point we might try to combine the negation “not” with the conjunction “and”
or the disjunction “or.” We compute the truth table of “not(A and B),” as
follows:
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A B A and B not(A and B)
t t t f
t f f t
f t f t
f f f t

Next, we observe that “not(A) or not(B)” has the same truth table as
“not(A and B).”

A B not(A) not(B) not(A) or not(B)
t t f f f
t f f t t
f t t f t
f f t t t

We say that two statement formulas such as “not(A and B)” and “not(A)
or not(B)” are logically equivalent if they have the same truth table; when
we substitute actual statements for A and B in the logically equivalent state-
ment formulas, we end up with two composite statements with exactly the
same truth value; that is one is true if, and only if, the other is true.

What we have verified with truth tables also makes perfect intuitive
sense: “A and B” is false precisely if not both A and B are true, that is when
one or the other, or both, of A and B is false.

Exercise 1.1.1. Check similarly that “not(A or B)” is logically equiv-
alent to “not(A) and not(B),” by writing out truth tables. Also verify
that “not(not(A))” is equivalent to “A,” by using truth tables.

The logical equivalence of “not(A or B)” and ‘not(A) and not(B)” also
makes intuitive sense. “A or B” is true when at least one of A and B is true.
“A or B” is false when neither A nor B is true, that is when both are false.

Examples:

• The negation of “Julius Caesar was the first Roman emperor, and
Wilhelm II was the last German emperor” is “Julius Caesar was
not the first Roman emperor, or Wilhelm II was not the last German
emperor.” This is false.
• The negation of “Julius Caesar was the first Roman emperor, and

Peter the Great was the last German emperor” is “Julius Caesar
was not the first Roman emperor, or Peter the Great was not the last
German emperor.” This is true.
• The negation of “Julius Caesar was the first Chinese emperor, or

Peter the Great was the last German emperor” “Julius Caesar was
not the first Chinese emperor, and Peter the Great was not the last
German emperor.” This is true.
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• The negation of “2 < 3, or π is the area of a circle of radius 2” is
“2 ≥ 3, and π is not the area of a circle of radius 2.” This is false,
because the first part is false.

1.1.6. The implication if...then. Next, we consider the implication “if
A, then B” or “A implies B.” We define “if A, then B” to mean “not(A and
not(B)),” or, equivalently, “not(A) or B”; this is fair enough, since we want
“if A, then B” to mean that one cannot have A without also having B. The
negation of “A implies B” is thus “A and not(B)”.

Exercise 1.1.2. Write out the truth table for “A implies B” and for its
negation.

Definition 1.1.1. The contrapositive of the implication “A implies B” is
“not(B) implies not(A).” The converse of the implication “A implies B” is
“B implies A”.

The converse of a true implication may be either true or false. For ex-
ample:

• The implication “If−3 > 2, then 9 > 4” is true. The converse im-
plication “If 9 > 4, then (−3) > 2” is false.

However, the contrapositive of a true implication is always true, and the
contrapositive of a false implication is always false, as is verified in Exer-
cise 1.1.3.

Exercise 1.1.3. “A implies B” is equivalent to its contrapositive “not(B)
implies not(A).” Write out the truth tables to verify this.

Exercise 1.1.4. Sometimes students jump to the conclusion that “A
implies B” is equivalent to one or another of the following: “A and
B,” “B implies A,”, or “not(A) implies not(B).” Check that in fact “A
implies B” is not equivalent to any of these by writing out the truth
tables and noticing the differences.

Exercise 1.1.5. Verify that “A implies (B implies C)” is logically equiv-
alent to “(A and B) implies C,” by use of truth tables.

Exercise 1.1.6. Verify that “A or B” is equivalent to ‘if ‘not(A), then
B,” by writing out truth tables. (Often a statement of the form “A or
B” is most conveniently proved by assuming A does not hold, and
proving B.)

The use of the connectives “and,” and “not” in logic and mathematics
coincide with their use in everyday language, and their meaning is clear.
The use of “or” in mathematics differs only slightly from everyday use, in
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that we insist on using the inclusive rather than the exclusive or in mathe-
matics.

The use of “if ... then” in mathematics, however, is a little mysterious.
In ordinary speech, we require some genuine connection, preferably a causal
connection between the “if” and the “then” in order to accept an “if ... then”
statement as sensible and true. For example:

• If you run an engine too fast, you will damage it.
• If it rains tomorrow, we will have to cancel the picnic.
• 2 < 3 implies 3/2 > 1.

These are sensible uses of ‘if ... then” in ordinary language, and they in-
volve causality: misuse of the engine will cause damage, rain will cause
the cancellation of the picnic, and 2 being less than 3 is an explanation for
3/2 being greater than 1.

On the other hand, the implications:

• If the Seventeenth of May is Norwegian independence day, then Julius
Caesar was the first emperor of Rome.
• 2 < 3 implies π > 3.14.

would ordinarily be regarded as nonsense, as modern Norwegian history
cannot have had any causal influence on ancient Roman history, and there is
no apparent connection between the two inequalities in the second example.
But according to our defined use of “if ... then,” both of these statements
must be accepted as a true. Even worse:

• If the Eighteenth of May is Norwegian independence day, then Julius
Caesar was the last emperor of Germany.
• If 2 > 3 then

√
2 is rational.

are also true statements, according to our convention. However unfortunate
these examples may seem, we find it preferable in mathematics and logic
not to require any causal connection between the “if” and the “then,” but to
judge the truth value of an implication “if A, then B” solely on the basis of
the truth values of A and B.

1.1.7. Some logical expressions. Here are a few commonly used log-
ical expressions:

• “A if B” means “B implies A.”
• “A only if B” means “A implies B.”
• “A if, and only if, B” means “A implies B, and B implies A.”
• “Unless” means “if not,” but “if not” is equivalent to “or.” (Check

this!)
• Sometimes “but” is used instead of “and” for emphasis.
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1.2. Quantified statements
1.2.1. Quantifiers. One frequently makes statements in mathematics

which assert that all the elements in some set have a certain property, or
that there exists at least one element in the set with a certain property. For
example:

• For every real number x, one has x2 ≥ 0.
• For all lines L and M, if L 6= M and L∩ M is non-empty, then L∩

M consists of exactly one point.
• There exists a positive real number whose square is 2.
• Let L be a line. Then there exist at least two points on L.

Statements containing one of the phrases “for every”, “for all”, “for
each”, etc. are said to have a universal quantifier. Such statements typi-
cally have the form:

• For all x, P(x),

where P(x) is some assertion about x. The first two examples above have
universal quantifiers.

Statements containing one of the phrases “there exists,” “there is,” “one
can find,” etc. are said to have an existential quantifier. Such statements
typically have the form:

• There exists an x such that P(x),

where P(x) is some assertion about x. The third and fourth examples above
contain existential quantifiers.

One thing to watch out for in mathematical writing is the use of implicit
universal quantifiers, which are usually coupled with implications. For ex-
ample,

• If x is a non-zero real number, then x2 is positive

actually means,

• For all real numbers x, if x 6= 0, then x2 is positive,

or

• For all non-zero real numbers x, the quantity x2 is positive.

1.2.2. Negation of Quantified Statements. Let us consider how to
form the negation of sentences containing quantifiers. The negation of the
assertion that every x has a certain property is that some x does not have
this property; thus the negation of

• For every x, P(x).

is

• There exists an x such that not P(x).
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For example the negation of the (true) statement

• For all non-zero real numbers x, the quantity x2 is positive

is the (false) statement

• There exists a non-zero real numbers x, such that x2 ≤ 0.

Similarly the negation of a statement

• There exists an x such that P(x).

is

• For every x, not P(x).

For example, the negation of the (true) statement

• There exists a real number x such that x2 = 2.

is the (false) statement

• For all real numbers x, x2 6= 2.

In order to express complex ideas, it is quite common to string together
several quantifiers. For example

• For every positive real number x, there exists a positive real number
y such that y2 = x.
• For every natural number m, there exists a natural number n such

that n > m.
• For every pair of distinct points p and q, there exists exactly one

line L such that L contains p and q.

All of these are true statements.
There is a rather nice rule for negating such statements with chains of

quantifiers: one runs through chain changing every universal quantifier to
an existential quantifier, and every existential quantifier to a universal quan-
tifier, and then one negates the assertion at the end.

For example, the negation of the (true) sentence

• For every positive real number x, there exists a positive real number
y such that y2 = x.

is the (false) statement

• There exists a positive real number x such that for every positive
real number y, one has y2 6= x.

1.2.3. Implicit universal quantifiers. Frequently “if ... then” sentences
in mathematics also involve the universal quantifier “for every”.

• For every real number x, if x 6= 0, then x2 > 0.

Quite often the quantifier is only implicitly present; in place of the sentence
above, it is common to write

• If x is a non-zero real number, then x2 > 0.
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The negation of this is not

• x is a non-zero real number and x2 ≤ 0,

as one would expect if one ignored the (implicit) quantifier. Because of the
universal quantifier, the negation is actually

• There exists a real number x such that x 6= 0 and x2 ≤ 0.

It might be preferable if mathematical writers made all quantifiers explicit,
but they don’t, so one must look out for and recognize implicit universal
quantifiers in mathematical writing. Here are some more examples of state-
ments with implicit universal quantifiers:

• If two distinct lines intersect, their intersection contains exactly one
point.
• If p(x) is a polynomial of odd degree with real coefficients, then p

has a real root.

Something very much like the use of implicit universal quantifiers also
occurs in everyday use of implications. In everyday speech, “if ... then”
sentences frequently concern the uncertain future, for example:

(∗) If it rains tomorrow, our picnic will be ruined.
One notices something strange if one forms the negation of this state-

ment. (When one is trying to understand an assertion, it is often illuminat-
ing to consider the negation.) According to our prescription for negating
implications, the negation ought to be:

• It will rain tomorrow, and our picnic will not be ruined.

But this is surely not correct! The actual negation of the sentence (∗) ought
to comment on the consequences of the weather without predicting the
weather:

(∗∗) It is possible that it will rain tomorrow, and our picnic will not
be ruined.

What is going on here? Any sentence about the future must at least
implicitly take account of uncertainty; the purpose of the original sentence
(∗) is to deny uncertainty, by issuing an absolute prediction:

• Under all circumstances, if it rains tomorrow, our picnic will be ru-
ined.

The negation (∗∗) denies the certainty expressed by (∗).
1.2.4. Order of quantifiers. It is important to realize that the order

of universal and existential quantifiers cannot be changed without utterly
changing the meaning of the sentence. For example, if you start with the
true statement:

• For every positive real number x, there exists a positive real number
y such that y2 = x
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and reverse the two quantifiers, you get the totally absurd statement:

• There exists a positive real number y such that for every positive
real number x, one has y2 = x.

1.2.5. Negation of complex sentences. Here is a summary of rules for
negating statements:

1. The negation of “A or B” is “not(A) and not(B).”
2. The negation of “A and B” is “not(A) or not(B).”
3. The negation of “For every x, P(x)” is “There exists x such that

not(P(x)).”
4. The negation of “There exists an x such that P(x)” is “For every x,

not(P(x)).”
5. The negation of “A implies B” is “A and not(B).”
6. Many statements with implications have implicit universal quanti-

fiers, and one must use the rule (3) for negating such sentences.

The negation of a complex statement (one containing quantifiers or log-
ical connectives) can be “simplified” step by step using the rules above,
until it contains only negations of simple statements. For example, a state-
ment of the form “For all x, if P(x), then Q(x) and R(x)” has a negation
which simplifies as follows:

not(For all x, if P(x), then Q(x) and R(x)) ≡
There exists x such that not( if P(x), then Q(x) and R(x)) ≡
There exists x such that P(x) and not( Q(x) and R(x)) ≡
There exists x such that P(x) and not(Q(x) ) or not(R(x) ) .

Let’s consider a special case of a statement of this form:

• For all real numbers x, if x < 0, then x3 < 0 and |x| = −x.

Here we have P(x) : x < 0, Q(x) : x3 < 0 and R(x) : |x| = −x. Therefore
the negation of the statement is:

• There exists a real number x such that x < 0, and x3 ≥ 0 or |x| 6=
−x.

Here is another example

• If L and M are distinct lines with non-empty intersection, then the
intersection of L and M consists of one point.

This sentence has an implicit universal quantifier and actually means:

• For every pair of lines L and M, if L and M are distinct and have
non-empty intersection, then the intersection of L and M consists
of one point.

Therefore the negation uses both the rule for negation of sentences with
universal quantifiers, and the rule for negation of implications:
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• There exists a pair of lines L and M such that L and M are distinct
and have non-empty intersection, and the intersection does not con-
sist of one point.

Finally, this can be rephrased as:

• There exists a pair of lines L and M such that L and M are distinct
and have at least two points in their intersection.

Exercise 1.2.1. Form the negation of each of the following sentences.
Simplify until the result contains negations only of simple sentences.
(a) Tonight I will go to a restaurant for dinner or to a movie.
(b) Tonight I will go to a restaurant for dinner and to a movie.
(c) If today is Tuesday, I have missed a deadline.
(d) For all lines L, L has at least two points.
(e) For every line L and every plane P , if L is not a subset of P ,

then L ∩ P has at most one point.

Exercise 1.2.2. Same instructions as for the previous problem Watch
out for implicit universal quantifiers.

(a) If x is a real number, then
√

x2 = |x|.
(b) If x is a natural number and x is not a perfect square, then√

x is irrational.
(c) If n is a natural number, then there exists a natural number

N such N > n.
(d) If L and M are distinct lines, then either L and M do not

intersect, or their intersection contains exactly one point.

1.2.6. Deductions. Logic concerns not only statements but also de-
ductions. Basically there is only one rule of deduction:

• If A, then B. A. Therefore B.

For quantified statements this takes the form:

• For all x, if A(x), then B(x). A(α). Therefore B(α).

Example:

• Every subgroup of an abelian group is normal. Z is an abelian
group, and 3Z is a subgroup. Therefore 3Z is a normal subgroup
of Z.

If you don’t know what this means, it doesn’t matter: You don’t have to
know what it means in order to appreciate its form. Here is another example
of exactly the same form:

• Every car will eventually end up as a pile of rust. My brand new
blue-green Miata is a car. Therefore it will eventually end up as a
pile of rust.
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As you begin to read proofs, you should look out for the verbal vari-
ations which this one form of deduction takes, and make note of them for
your own use.

Most statements requiring proof are “if ... then” statements. To prove
“if A, then B,” one has to assume A, and prove B under this assumption.
To prove “For all x, A(x) implies B(x),” one assumes that A(α) holds for
a particular (but arbitrary) α, and proves B(α) for this particular α.

1.3. Sets
1.3.1. Sets and set operations. A set is a collection of (mathematical)

objects. The objects contained in a set are called its elements. We write
x ∈ A if x is an element of the set A. Two sets are equal if they contain ex-
actly the same elements. Very small sets can be specified by simply listing
their elements, for example A = {1,5,7}. For sets A and B, we say that A
is contained in B, and we write A ⊆ B if each element of A is also an ele-
ment of B. That is, if x ∈ A then x ∈ B. (Because of the implicit universal
quantifier, the negation of this is that there exists an element of A which is
not an element of B.)

Two sets are equal if they contain exactly the same elements. This might
seem like a quite stupid thing to mention, but in practice one often has two
quite different descriptions of the same set, and one has to do a lot of work
to show that the two sets contain the same elements. To do this, it is often
convenient to show that each is contained in the other. That is, A = B if,
and only if, A ⊆ B and B ⊆ A.

Subsets of a given set are frequently specified by a property or predi-
cate; for example, {x ∈ R : 1 ≤ x ≤ 4} denotes the set of all real numbers
between 1 and 4. Note that set containment is related to logical implica-
tion in the following fashion: If a property P(x) implies a property Q(x),
then the set corresponding to P(x) is contained in the set corresponding to
Q(x). For example, x < −2 implies that x2 > 4, so {x ∈ R : x < −2} ⊆
{x ∈ R : x2 > 4}.

The intersection of two sets A and B, written A ∩ B, is the set of ele-
ments contained in both sets. A∩ B = {x : x ∈ A and x ∈ B}. Note the
relation between intersection and the logical conjunction. If A = {x ∈ C :
P(x)} and B= {x ∈ C : Q(x)}, then A∩ B= {x ∈ C : P(x) and Q(x)}.

The union of two sets A and B, written A ∪ B, is the set of elements
contained in at least one of the two sets. A∪ B = {x : x ∈ A or x ∈ B}.
Set union and the logical disjunction are related as are set intersection and
logical conjunction. If A = {x ∈ C : P(x)} and B = {x ∈ C : Q(x)}, then
A ∪ B = {x ∈ C : P(x) or Q(x)}.
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Given finitely many sets, for example, five sets A, B,C, D, E, one sim-
ilarly defines their intersection A ∩ B ∩ C ∩ D ∩ E to consist of those
elements which are in all of the sets, and the union A ∪ B ∪ C ∪ D ∪ E
to consist of those elements which are in at least one of the sets.

There is a unique set with no elements at all which is called the empty
set, or the null set and usually denoted ∅.
Proposition 1.3.1. The empty set is a subset of every set.

Proof. Given an arbitrary set A, we have to show that ∅ ⊆ A; that is, for
every element x ∈ ∅, one has x ∈ A. The negation of this statement is that
there exists an element x ∈ ∅ such that x 6∈ A. But this negation is false,
because there are no elements at all in ∅! So the original statement is true.

If the intersection of two sets is the empty set, we say that the sets are
disjoint, or non-intersecting.

Here is a small theorem concerning the properties of set operations.

Proposition 1.3.2. For all sets A, B,C,

(a) A ∪ A = A, and A ∩ A = A.
(b) A ∪ B = B ∪ A, and A ∩ B = B ∩ A.
(c) (A ∪ B) ∪ C = A ∪ B ∪ C = A ∪ (B ∪ C), and (A ∩ B) ∩ C =

A ∩ B ∩C = A ∩ (B ∩C).
(d) A∩ (B∪C) = (A∩ B)∪ (A∩C), and A∪ (B∩C) = (A∪ B)∩

(A ∪C).

The proofs are just a matter of checking definitions.

Given two sets A and B, we define the relative complement of B in A,
denoted A \ B, to be the elements of A which are not contained in B. That
is, A \ B = {x ∈ A : x 6∈ B}.

In general, all the sets appearing in some particular mathematical dis-
cussion are subsets of some “universal” set U; for example, we might be
discussing only subsets of the real numbers R. (However, there is no uni-
versal set once and for all, for all mathematical discussions; the assumption
of a “set of all sets” leads to contradictions.) It is customary and convenient
to use some special notation such as C (B) for the complement of B relative
to U, and to refer to C (B) =U \ B simply as the complement of B. (The
notation C (B) is not standard.)

Exercise 1.3.1. The sets A∩ B and A \ B are disjoint and have union
equal to A.
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Exercise 1.3.2 (de Morgan’s laws). For any sets A and B, one has:

C (A ∪ B) = C (A)∩C (B),

and

C (A ∩ B) = C (A)∪C (B).

Exercise 1.3.3. For any sets A and B, A \ B = A ∩C (B).

Exercise 1.3.4. For any sets A and B,

(A ∪ B) \ (A ∩ B) = (A \ B)∪ (B \ A).

1.3.2. Functions. We recall the notion of a function from A to B and
some terminology regarding functions which is standard throughout math-
ematics. A function f from A to B is a rule which gives for each element
of a ∈ A an “outcome” in f (a) ∈ B. A is called the domain of the function,
B the co-domain, f (a) is called the value of the function at a, and the set
of all values, { f (a) : a ∈ A}, is called the range of the function.

In general, the range is only a subset of B; a function is said to be sur-
jective, or onto, if its range is all of B; that is, for each b ∈ B, there exists
an a ∈ A, such that f (a) = b. Figure 1.3.1 exhibits a surjective function.
Note that the statement that a function is surjective has to be expressed by
a statement with a string of quantifiers.

Figure 1.3.1. A Surjection

A function f is said to be injective, or one-to-one, if for each two dis-
tinct elements a and a′ in A, one has f (a) 6= f (a′). Equivalently, for all
a, a′ ∈ A, if f (a) = f (a′) then a = a′. Figure 1.3.2 displays an injective
and a non- injective function.
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Figure 1.3.2. Injective and Non-injective functions

Finally f is said to be bijective if it is both injective and surjective. A
bijective function (or bijection) is also said to be a one-to-one correspon-
dence between A and B, since it matches up the elements of the two sets
one-to-one. When f is bijective, there is an inverse function f−1 defined
by f−1(b) = a if, and only if, f (a) = b. Figure 1.3.3 displays a bijective
function.

2

3

4

5

1 1

2

3

4

5

Figure 1.3.3. A Bijection

If f : X→ Y is a function and A is a subset of X, we write f (A) for
{ f (a) : a ∈ A} = {y ∈ Y : there exists a ∈ A such that y= f (a)}. We refer
to f (A) as the image of A under f . If B is a subset of Y , we write f−1(B)
for {x ∈ X : f (x) ∈ B}. We refer to f−1(B) as the preimage of B under f .
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Chapter 2

Elements of Geometry

2.1. First concepts
The geometry which we will study consists of a set S, called space.

The elements of the set are called points. Furthermore S has certain dis-
tinguished subsets called lines and planes. A little later we will introduce
other special types of subsets of S, for example, circles, triangles, spheres,
etc.

On the one hand, we want to picture these various types of subsets ac-
cording to our usual conceptions of them: Lines, planes, and so forth are
idealizations of objects known from experience of the physical world. For
example, a line is an idealization of a piece of string stretched tightly be-
tween two points. (But it is supposed to extend indefinitely in both direc-
tions, and, of course, we do not have any direct physical experience with
anything of indefinite extent.) Similarly a plane is supposed to be a flat
surface, like a table-top, but also is supposed to extend indefinitely in all
directions. (Sort of like Nebraska, but larger. Again, we don’t have any di-
rect physical experience with flat surfaces of indefinite extent.) We want to
use our intuition and experience with physical space to suggest the results
which should hold true in our geometry, and to guide our assumptions.

On the other hand, it is a fundamental goal of a logical treatment of ge-
ometry to make all of our assumptions quite explicit. We want to try to be
very careful not to use in any proof any hidden assumptions about geomet-
ric objects. Only in this way can we be sure that our arguments are correct,
and that we can trust our results.

We will allow ourselves the use of the real numbers, and all of their
usual properties.

Axiom I-1 Given two distinct points, there is exactly one line contain-
ing them.

16
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A

B

Figure 2.1.1. Axiom I-1

Remember, a line is a set of points, and containment here means con-
tainment as elements. We denote by

←→
PQ the line containing distinct points

P and Q
We call any collection of points which lie on one line colinear and any

collection of points which lie on one plane coplanar

Axiom I-2 Given three non-colinear points, there is exactly one plane
containing them.

C

B
A

Figure 2.1.2. Axiom I-2

Axiom I-3 If two distinct points lie in a plane P , then the line con-
taining them is a subset of P .

A

B

Figure 2.1.3. Axiom I-3

Axiom I-4 If two planes intersect, then their intersection is a line.
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Figure 2.1.4. Axiom I-4

Theorem 2.1.1. If two distinct lines intersect, then their intersection con-
sists of exactly one point.

Figure 2.1.5. Intersection of Two LInes

Proof. We could rephrase the statement thus: if two lines are distinct, then
their intersection does not contain two distinct points. The contrapositive
is: If two lines L and M contain two distinct points in their intersection,
then L = M. We prove this contrapositive statement.

Suppose L and M are lines (possibly the same, possibly distinct), and P
and Q are two different points in their intersection. Since P, Q are elements
of L, it follows from Axiom I-1 that L = ←→PQ. Likewise, since P, Q are
elements of M, it follows from Axiom I-1 that M = ←→PQ. But then M =←→
PQ = L

Theorem 2.1.2. If a line L intersects a plane P and L is not a subset of P
then the intersection of L and P consists of exactly one point.

Proof. Exercise.
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Figure 2.1.6. Intersection of a Line and a Plane

So far, all the axioms (and two theorems) would be valid for a geometry
with only one point P with {P} begin both a line and an plane! So clearly
the axioms so far do not force us to be talking about the geometry which
we expect to talk about! Very shortly, I will give axioms which ensure that
space has lots of points, but in the meanwhile let us at least assume the fol-
lowing:

Axiom I-5 Every line has at least two points. Every plane has at least
3 non-colinear points. And S has at least 4 non-coplanar points.

Theorem 2.1.3. If L is a line, and P is a point not in L, then there is exactly
one plane P containing L ∪ {P}.

Proof. Exercise.

L P

Figure 2.1.7. Plane determined by a Line and a Point
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Theorem 2.1.4. If L and M are two distinct lines which intersect, then
there is exactly one plane containing L ∪ M.

Proof. Exercise.

L

M

Figure 2.1.8. Plane determine by Two Lines

2.2. Distance
A familiar notion in geometry is that of distance. The distance between

two points is the length of the line segment connecting them. In order to get
things into logical order, we will actually introduce the notion of distance
first, and use it to establish the notion of line segment!

Axiom D-1 For every pair of points A, B there is a number d(A, B),
called the distance from A to B. Distance satisfies the following proper-
ties:

1. d(A, B) = d(B, A)
2. d(A, B) ≥ 0, and d(A, B) = 0 if, and only if, A = B.

Definition 2.2.1. A coordinate function on a line L is a bijective (one-to-
one and onto) function f from L to the real numbers R which satisfies
| f (A)− f (B)| = d(A, B) for all A, B ∈ L. Given a coordinate function
f , the number f (A) is called the coordinate of the point A ∈ L.

Axiom D-2 Every line has at least one coordinate function.

It follows immediately that every line contains infinitely many points,
because R is an infinite set, and a coordinate function is a one-to-one cor-
respondence of the line with R. Any coordinate function makes a line into
a “number line” or “ruler”.
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Lemma 2.2.2. If L is a line and f : L→ R is a coordinate function, then
g(A) = − f (A) is also a coordinate function.

Proof. Exercise.

Lemma 2.2.3. If L is a line and f : L→ R is a coordinate function, then
for any real number s, h(A) = f (A)+ s is also a coordinate function.

Proof. Exercise.

Lemma 2.2.4. Let L be a line and A and B distinct points on the line L.
Then there is a coordinate function f on L satisfying f (A)= 0 and f (B) >
0. Furthermore, if g is any coordinate function on L then f can be taken
to have the form

f (P) = ±g(P)+ s

for some s ∈ R.

Proof. By Axiom D-2, L has a coordinate function g. Let s = g(A), and
define f1(P)= g(P)− s. By Lemma 2.3, f1 is also a coordinate function,
and f1(A)= g(A)− s= 0. Now | f1(B)| = | f1(B)− f1(A)| = d(A, B) >
0, since A 6= B. If f1(B) > 0, we take f (P)= f1(P). Otherwise, we take
f (P) = − f1(P), which is also a coordinate function by Lemma 2.2.

Theorem 2.2.5. Let L be a line and A and B distinct points on the line L.
There is exactly one coordinate function f on L satisfying f (A) = 0 and
f (B) > 0.

Proof. The previous lemma says that there is at least one such function.
We have to show that there is only one. So let f, g be two coordinate func-
tions on L satisfying f (A)= g(A)= 0 and f (B) > 0, g(B) > 0. We have
to show that f (C) = g(C) for all C ∈ L. In any case, we have | f (C)| =
| f (C)− f (A)| = d(A, B) = |g(C)− g(A)| = |g(C)|. So in case f (C)
and g(C) are both non-negative or both non-positive, they are equal. In
particular, f (B) = g(B) = d(A, B).

If f (C), g(C) satisfy f (C) ≤ f (B) and g(C) ≤ g(B), then g(B)−
g(C) = d(B,C) = f (B) − f (C). Therefore, f (C) − g(C) = f (B) −
g(B) = 0, or f (C) = g(C).

The only remaining case to consider is that for some C ∈ L, one of
f (C), g(C) is negative and one is greater than f (B)= g(B). Without loss
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of generality, assume g(C) < 0 and g(B) < f (C). Then we have

d(C, B) = g(B)− g(C)

= (g(B)− g(A))+ (g(A)− g(C))

= d(A, B)+ d(A,C),

since g(C) < g(A) < g(B). Using the coordinate function f instead, we
have

d(A,C) = f (C)− f (A)

= ( f (C)− f (B))+ ( f (B)− f (A))

= d(B,C)+ d(A, B),

since f (A) < f (B) < f (C). Adding the two displayed equations gives

d(C, B)+ d(A,C) = d(A, B)+ d(A,C)+ d(B,C)+ d(A, B),

and canceling like quantities on the two sides gives

0 = 2d(A, B).

But this is false, because A 6= B. This contradiction shows that the case
under consideration cannot occur. So we always have f (C) = g(C).

Theorem 2.2.6. Let f, g be two coordinate functions on a line L. Then

f (P) = ±g(P)+ s,

for some s ∈ R.

Proof. Let A = f−1(0), so f (A) = 0. Furthermore, let B = f−1(1), so
f (B) = 1. According to Lemma 2.4, there is a coordinate function h of
the form h(P) = ±g(P)+ s which satisfies h(A) = 0 and h(B) > 0. But
according to Theorem 2.5, h = f , so f has the desired form.

2.3. Betweenness, segments, and rays

Definition 2.3.1. Let x, y, and z be three different real numbers. We say
that y is between x and z if x < y < z or z < y < x. We denote this relation
by x y z

Note that x y z is equivalent to z y x.



2.3. BETWEENNESS, SEGMENTS, AND RAYS 23

Lemma 2.3.2. Let x, y, and z be three different real numbers. Let s be a
real number. The following are equivalent:

(a) x y z.
(b) (x+ s) (y+ s) (z+ s).
(c) (−x) (−y) (−z).
(d) (−x+ s) (−y+ s) (−z+ s).

Proof. This is true because addition of a number to both sides of an in-
equality preserves the inequality, while multiplying both sides of an inequal-
ity by (-1) reverses the order of the inequality.

Lemma 2.3.3. Let L be a line, and let f, g be two coordinate functions on
L. Let A, B,C be distinct points on L. The following are equivalent:

(a) f (A) f (B) f (C).
(b) g(A) g(B) g(C).

Proof. Note that all the quantities f (P), g(P) for P a point in L are real
numbers. So the two conditions concern betweenness for real numbers.

According to Theorem 2.2.6, there is an ε ∈ {±1} and a real number
s such that for all points P on L, f (P) = εg(P)+ s. Then according to
Lemma 2.3.2, the two conditions (a) and (b) are equivalent.

Definition 2.3.4. Let L be a line, and let A, B,C be distinct points on L.
We say that B is between A and C if for some coordinate function f on L,
one has f (A) f (B) f (C). We denote this relation by A B C.

C

A

B

Figure 2.3.1. B is between A and C

According to Lemma 2.3.2, if f (A) f (B) f (C) for one coordi-
nate function f , then f (A) f (B) f (C) for all coordinate functions
f . So the concept of betweenness for points on a line does not depend on
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the choice of a coordinate function. By convention, when we assert that
three points A, B,C satisfy A B C, we implicitly assert that the three
points are distinct and colinear.

The next two theorems are very easy:

Theorem 2.3.5. A B C if, and only if, C B A.

Proof. Exercise.

Theorem 2.3.6. Given three distinct points on a line, exactly one of them
is between the other two.

Proof. Exercise.

Definition 2.3.7. Let A and B be two distinct points. The line segment AB
is the subset of the line

←→
AB consisting of A, B, and the set of points C which

are between A and B.

AB = {C : A C B} ∪ {A, B}

B

A

Figure 2.3.2. A Segment

Theorem 2.3.8. Let A, B be distinct points and let f be a coordinate sys-
tem on

←→
AB such that f (A) < f (B). Then

AB = {C ∈←→AB : f (A) ≤ f (C) ≤ f (B)}.

Proof. Exercise.

Theorem 2.3.9. A line segment determines its endpoints. That is, if seg-
ments AB and A′B′ are equal, then {A, B} = {A′, B′}.
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Proof. Exercise.

Definition 2.3.10. The length of a line segment AB is d(A, B). The length
is sometimes denoted by `(AB). Two segments are said to be congruent if
they have the same length. One denotes congruence of segments by AB ∼=
CD.

Note that the definition of the length of a segment makes sense because
of Theorem 2.3.9.

Theorem 2.3.11. A line segment has a unique midpoint. That is, given
a segment AB there is a unique point C ∈ AB satisfying d(A,C) =
D(C, B) = (1/2)d(A, B).

Proof. Exercise.

Definition 2.3.12. Let A and B be two distinct points. The ray
−→
AB is is the

subset of the line
←→
AB consisting of A, B, and the set of points C such that

A C B or A B C.

A

B

Figure 2.3.3. A Ray

Theorem 2.3.13. Let A and B be two distinct points. The ray
−→
AB consists

of those points C ∈←→AB such that C does not satisfy C A B.

Proof. Exercise.

Theorem 2.3.14. Let A and B be two distinct points. Let f be a coordi-
nate function on

←→
AB such that f (A) = 0 and f (B) > 0. Then the ray

−→
AB

consists of those points C ∈←→AB such that f (C) ≥ 0.
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Proof. Exercise.

Theorem 2.3.15. A ray determines its endpoint. That is, if rays
−→
AB and−−→

A′B′ are equal, then A = A′.

Proof. Exercise.

Corollary 2.3.16. Let A and B be two distinct points, and let r > 0 be a
positive real number. Then there is exactly one point C on the ray

−→
AB such

that d(A,C) = r.

Proof. Let f be a coordinate function on
←→
AB such that f (A)= 0 and f (B) >

0. For all points D ∈ −→AB, one has f (D) ≥ 0, by the Theorem, and there-
fore d(A, D)= | f (D)− f (A)| = f (D). Let r > 0. Since f is one-to-one,
there can be at most one point C ∈ −→AB such that d(A,C) = f (C) = r.
Since f is onto, there is a point C on

←→
AB such that f (C)= r, and again by

the Theorem, C ∈ −→AB.

Theorem 2.3.17. A ray is determined by its endpoint and any other point
on the ray. That is, if C ∈ −→AB and C 6= A, then

−→
AC = −→AB.

Proof. Exercise.

Definition 2.3.18. An angle is the union of two rays with the same end-
point, not contained in one line. The two rays are called the sides of the
angle. The common endpoint is called the vertex of the angle. The angle−→
AB ∪−→AC is denoted 6 BAC (or equally well 6 C AB.)

A

B

C

Figure 2.3.4. An Angle
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Remark 2.3.19. The union of two distinct rays with a common endpoint,
which do lie on one line, is the line. (Proof?) So we will sometimes call a
line with a distinguished point on the line a straight angle.

Definition 2.3.20. Let A, B,C be non-colinear points. The triangle
4ABC is the union of the segments AB, BC, and AC. The three segments
are called the sides of the triangle.

The angles 6 ABC, 6 BC A, 6 C AB are called the angles of the triangle.
One often denotes these angles by 6 A, 6 B, and 6 C, respectively. One says
that 6 C and side AB are opposite, and similarly for the other angles and
sides.

C

B

A

Figure 2.3.5. A Triangle

Theorem 2.3.21. A triangle determines its vertices. That is, if 4ABC =
4DEF, then {A, B,C} = {D, E, F}.

Proof. The proof of this is surprisingly tricky, and requires several steps.
We will skip it, but the ambitious reader may wish to prove it.

The next result is slightly technical. It gives a characterization of be-
tweenness (and therefore of line segments).

Theorem 2.3.22. Let A, B,C be distinct points on a line. The following
are equivalent:

(a) A B C.
(b) d(A,C) = d(A, B)+ d(B,C).

Proof. It is possible to choose a coordinate function f on L such that f (A) <
f (B), by Theorem 2.2.5.
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Suppose A B C. Then f (A) < f (B) < f (C), so

d(A,C) = f (C)− f (A)

= ( f (C)− f (B))+ ( f (B)− f (A))

= d(B,C)+ d(A, B).

Thus we have (a) implies (b).
Suppose now that (b) holds. According to Theorem 2.3.6, exactly one

of the conditions is satisfied:

1. B A C.
2. A C B.
3. A B C.

Our strategy is to eliminate the first two possibilities, leaving only the third.
Suppose we have B A C. It follows that

d(B,C) = d(B, A)+ d(A,C),(2.3.1)

by the (already proved) implication (a) implies (b).
Now adding this equation and the equation in condition (b), and then

canceling like terms on the two sides gives

0 = 2d(B, A),(2.3.2)

so that A = B by Axiom D-1. This contradicts our original assumptions,
so it cannot be true that B A C.

The second possibility is eliminated in exactly the same way. This leaves
only the third possibility, and proves the implication (b) implies (a).

This theorem gives us a not so obvious characterization of line seg-
ments:

Corollary 2.3.23. Let A and C be distinct points, and let B be a third point
on
←→
AC, possibly equal to one of A, C. The following are equivalent:

(a) B is on the line segment AC.
(b) d(A,C) = d(A, B)+ d(B,C).

Theorem 2.3.24. (Segment addition and subtraction) Suppose A, B,C
are colinear with A B C and A′, B′,C′ are colinear with
A′ B′ C′.
(a) If AB ∼= A′B′ and BC ∼= B′C′, then AC ∼= A′C′.
(b) If AB ∼= A′B′ and AC ∼= A′C′, then BC ∼= B′C′.

Proof. This is immediate from the definition of congruence and the impli-
cation (a) implies (b) in Theorem 2.3.22.
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B

B'A

C

A'

C'

Figure 2.3.6. Segment Addition Theorem

Exercise 2.3.1. Given two distinct points A and B on a line L, prove
that there is a point M on L such that A M B and that there is
a point E on L such that A B E.

E
BM

A

Figure 2.3.7. Exercise 2.3.1

Given 4 distinct points A, B,C, D on a line, we write A B C D
if all the relations hold: A B C, A B D, A C D, and
B C D.

Exercise 2.3.2. Prove that any four points on a line can be named in
exactly one order A, B,C, D such that A B C D.

D
CB

A

Figure 2.3.8. Exercise 2.3.2
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Proof. Exercise, using a coordinate function.

2.4. Separation of a plane by a line
According to our usual conception of lines and planes, a line L con-

tained in a plane P divides the plane into two “halves,” one one each “side”
of the line. Given two points on one side of the line, it is possible to trace
a curve from one point to the other which does not cross the line L. But
given two points on opposite sides of the line, any curve from one to the
other will cross the line. These statements do not follow from our previous
axioms, so we need to assert them as a new axiom.

First we need a definition:

Definition 2.4.1. A set S is convex if, for each two distinct points A, B ∈ S,
the line segment AB is a subset of S.

Figure 2.4.1. Convex sets

Figure 2.4.2. Non-convex sets

Exercise 2.4.1.
(a) Every line is convex.
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(b) Every line segment is convex.
(c) Every ray is convex.
(d) Every plane is convex.

Axiom PS (Plane separation axiom) Let L be a line and P a plane
containing L. Then P \ L (the set of points on P which are not on L) is
the union of two sets H1 and H2 with the properties:

1. H1 and H2 are non-empty and convex.
2. Whenever P and Q are points such that P ∈ H1 and Q ∈ H2,

the segment PQ intersects L.

H 1

H 2

Figure 2.4.3. Plane Separation Axiom

One calls H1 and H2 the two half-planes determined by L. One says
that two points both contained in one of the half-planes are on the same side
of L, and that two points contained in different half-planes are on opposite
sides of L. One calls L the boundary of each of the half-planes. The union
of either of the half-planes with L is called a closed half-plane.

Exercise 2.4.2. Prove: Let L be a line in a plane P , and let A, B be
points of P which are not on L. Then L intersects the segment AB
if, and only if, A and B are on opposite sides of L.

Exercise 2.4.3. Prove: Let L be a line in a plane P , and let A, B,C
be points of P which are not on L. If A and B are on opposite sides
of L, and C and B are on opposite sides of L, then A and C are one
the same side of L.
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Theorem 2.4.2. (Pasch’s Axiom) Let 4ABC be a triangle in a plane P .
Let L 6= ←→AB be a line in P which intersects the segment AB at a point be-
tween A and B. Then L intersects one of the other two sides of the triangle.

A

B

C

Figure 2.4.4. Pasch’s Axiom

Proof. Since L intersects the segment AB at a point between A and B, A
and B lie on opposite sides of L, by the previous exercise. Suppose that L
does not intersect AC; then A and C are on the same side of L, again, by
the previous exercise. It follows that C and B are on opposite sides of L,
and therefore L intersects CB by the Plane Separation Axiom.

Remark 2.4.3. This is called Pasch’s axiom because it was introduced by
Pasch as an axiom, in place of the Plane Separation Axiom. For us, it is a
theorem.

Theorem 2.4.4. Let 4ABC be a triangle in a plane P . Let L be a line in
P which does not contain any of the vertices A, B,C of the triangle. Then
L does not intersect all three sides of the triangle.

Proof. Refer to the figure for Pasch’s axiom. Suppose L intersects two of
the sides of the triangle, say AB and BC. It has to be show that L does not
intersect AC. Because L intersects AB, it follows that A and B are on op-
posite sides of L. Similarly, C and B are on opposite sides of L. Therefore,
A and C are on the same side of L, so L does not intersect AC.

Theorem 2.4.5. Let P be a plane, and let L be a line in P . Let M 6= L be
another line in P which intersects L. Then M intersects both half-planes
of P determined by L.



2.4. SEPARATION OF A PLANE BY A LINE 33

Proof. Let A be the unique point of intersection of L and M (using Theo-
rem 1.1). Let f be a coordinate function on M and let B and C be points on
M such that f (B) < f (A) < f (C). Then we have B A C. Suppose
B and C are on the same side of L, and let H denote the half-plane which
contains both of them. Since H is convex, the segment BC is a subset of H.
Since A ∈ BC, it follows that A ∈ H. But A is also in L, so A ∈ H ∩ L= ∅.
This contradiction shows that B and C are on opposite sides of L, and thus
M intersects both half-planes determined by L.

Lemma 2.4.6. The set of points on a ray, other than the endpoint, is con-
vex.

Proof. Let
−→
AB be a ray, and let S denote

−→
AB \ {A}. It must be shown that

S is convex. Write M for
←→
AB. Let f be a coordinate function on M such

that f (A) = 0 and f (B) > 0 (Theorem 2.2.5). Then the ray
−→
AB is the set

of points C on M such that f (C) ≥ 0 (Theorem 2.3.14) and S is the set of
points C on M such that f (C) > 0. Let C and D be two distinct points
in S, and suppose without loss of generality that 0 < f (C) < f (D). If
C X D, then f (C) < f (X) < f (D). But then f (X) > 0, so X ∈
S.

Theorem 2.4.7. Let P be a plane, let L be a line in P . Let H be one of
the half-planes of P determined by L. Let A be a point on L and let B be
a point in H. Then every point of the

−→
AB other than A is an element of H.

That is,
−→
AB \ {A} ⊆ H. Moreover,

←→
AB ∩ H = −→AB \ {A}.

A

B

H

Figure 2.4.5. Theorem 2.4.7

Proof. Let S denote
−→
AB \ {A}. It must be shown that S =←→AB ∩ H.

Write M for
←→
AB; since B 6∈ L, we know M 6= L, and therefore A is the

unique point on M ∩ L. It follows that S ∩ L = ∅.
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Let H ′ denote the half-plane opposite to H. Suppose (in order to reach
a contradiction) that S ∩ H ′ contains a point C. According to the previous
lemma, S is convex; since both B and C are in S, one has BC ⊆ S, so BC∩
L ⊆ S ∩ L = ∅. On the other hand, by the Plane Separation Axiom, BC ∩
L 6= ∅. This contradiction shows that S ∩ H ′ = ∅. It follows that S ⊆ H,
so S ⊆ H ∩←→AB.

To finish the proof, it must be shown that H∩←→AB ⊆ S, or, equivalently,←→
AB \ S ⊆ P \ H. So let X ∈ ←→AB \ S. If X = A, then X ∈ L ⊆ P \ H. If
X 6= −→AB, then one has X A B. But then L intersects X B at A, so X
and B are on opposite sides of L. Hence X 6∈ H.

Definition 2.4.8. Consider an angle 6 ABC in a plane P . The point B lies
in one half-plane H of P determined by

←→
AC . Similarly, the point C lies in

one half-plane K of P determined by
←→
AB. The intersection H ∩ K of these

two half-planes is called the interior of the angle. We will call the union
of the angle and its interior the closed wedge determined by the angle. See
Figure 2.4.6.

C

B
A

Figure 2.4.6. Angle interior

Definition 2.4.9. The interior of the triangle is the intersection of the inte-
riors of the three angles of the triangle. See Figure 2.4.7

Theorem 2.4.10. Consider an angle 6 BAC, and let D be a point in the in-
terior of the angle. Then every point of the ray

−→
AD, except for the endpoint

A, lies in the interior of the angle. That is,
−→
AD \ {A} lies in the interior of

the angle. Moreover, the intersection of the line
←→
AD and the interior of the

angle is
−→
AD \ {A}.

Proof. This follows from two applications of Theorem 2.4.7. See Figure
2.4.8.
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C

B

A

Figure 2.4.7. Triangle interior

A
B

C D

Figure 2.4.8. Theorem 2.4.10

Theorem 2.4.11. Consider a triangle4ABC. All the points of the segment
BC, except for the endpoints, lie in the interior of the angle 6 BAC.

D
A

B

C

Figure 2.4.9. Theorem 2.4.11

Proof. See Figure 2.4.9. Let D be a point between B and C. Then D and C
are on the same side of line

←→
AB because that line intersects

←→
CD at B, which

is not between C and D. Similarly, D and B are on the same side of line←→
AC . But this means that D is in the interior of angle 6 C AB.
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Theorem 2.4.12. (Crossbar Theorem) Let4ABC be a triangle, and let D
be a point in the interior of the angle 6 A. Then the ray

−→
AD intersects the

side BC of the triangle opposite to 6 A.

D

C

B

A

Figure 2.4.10. Crossbar Theorem

Proof. Refer to Figure 2.4.10 for the theorem statement and Figure 2.4.11
for the proof. This is pretty tricky, and the reader is invited to skip it for
now, unless possessed by particular zeal.

l

n

m

F
E

A

B

C

D

Figure 2.4.11. Crossbar Proof

Designate the lines
←→
AC ,
←→
AD,
←→
AB by `, m, and n respectively. Let E be

a point on line n such that E A B (Exercise 2.3.1). Let F be a point
on the segment EC such that E F C (Exercise 2.3.1 ).

We make several observations:

1. E and B are on opposite sides of ` because ` intersects EB at A.
2. E and F are on the same side of ` because ` intersects←→EF at C,

which is not between E and F.
3. D and B are on the same side of ` because D is in the interior of

the angle 6 C AB.
4. Therefore F and D are on opposite sides of `.
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5. D and C are on the same side of n since D is in the interior of the
angle 6 C AB.

6. C and F are on the same side of n because n intersects
←→
FC at E,

which is not between F and C.
7. Therefore F and D are on the same side of n.

Since F and D lie on opposite sides of `, the segment FD intersects `
at some point A′. Since F and D lie on the same side of n, the point A′ is
not on n, and in particular A′ 6= A. If F were on line m, then←→FD would be
equal to m. But this cannot be so, because←→FD intersects ` at A′ while m
intersects ` at A.

Thus we conclude that m does not intersect EC at any point F between
E and C. Thus E and C are on the same side of m. But E and B are on oppo-
site sides of m because m intersects EB at A and E A B. Therefore
C and B are on opposite sides of m, and m must intersect CB at some point
X between C and B.

It remains only to show that X is on the ray
−→
AD ⊆ m. But according to

Theorem 2.4.11, X is in the interior of the angle 6 BAC, and according to
Theorem 2.4.10, the intersection of the interior of the angle and the line m
is contained in the ray

−→
AD. Therefore X is on the ray

−→
AD.

Theorem 2.4.13. Let 4ABC be a triangle, and let Y be a point in the in-
terior of angle 6 A. Let T be the point of intersection of

−→
AY and side BC

(using the Crossbar Theorem). Let Z be a point on the segment AT with
A Z T. Then Z is in the interior of the triangle 4ABC. See Figure
2.4.12.

YTZ

C

B

A

Figure 2.4.12. Theorem 2.4.13

Proof. Exercise.

Exercise 2.4.4. Prove: The intersection of two convex sets is convex.
The intersection of several convex sets is convex.
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Exercise 2.4.5. Prove: The interior of an angle is convex.

Exercise 2.4.6. Prove: The interior of a triangle is convex.

In the following, L is a line in a plane P , and H1 and H2 are the two
half-planes of P determined by L.

Exercise 2.4.7. Prove: The closed half-plane H1 ∪ L is convex.

Exercise 2.4.8. Prove: H1 contains at least 3 non-colinear points.

Exercise 2.4.9. Prove: P is the unique plane containing H1.

Exercise 2.4.10. Suppose that segments AB and CD intersect at a
point X such that A X B, and C X D. Show that B is in
the interior of angle 6 C AD, C is in the interior of angle 6 ADB, A is
in the interior of the angle 6 DBC, and D is in the interior of angle
6 BC A.

X

D

C
B

A

Figure 2.4.13. Exercise 2.4.10

2.5. Angular Measure
You are no doubt familiar with measuring angles using a protractor.

The common unit of angle measure is the degree; a straight angle is divided
into 180 degrees, a right angle into 90 degrees. Protractor measurement is
codified in the following additional axioms for geometry:

Axiom AM-1 There is a function m from the set of all angles to the set
of real numbers in the open interval (0,180).
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Definition 2.5.1. The value of the function m on an angle is called the mea-
sure of the angle. Two angles are congruent if they have the same measure.
Congruence of angles is denoted by

6 ABC ∼= 6 EFG

C

B

A

H

Figure 2.5.1. Angle construction

Axiom AM-2 (Angle Construction). Fix a ray
−→
AB, and one half plane H

determined by the line
←→
AB. For each number r ∈ (0,180), there is exactly

one ray
−→
AP with endpoint A and with P ∈ H, such that m 6 PAB = r.

Using the notion of congruence, this axiom translates to the following
statement: Let 6 XY Z be an angle. Fix a ray

−→
AB, and one half plane H

determined by the line
←→
AB. Then there is exactly one ray

−→
AP with endpoint

A and with P ∈ H, such that 6 XY Z ∼= 6 PAB.

D

A

B

C

m CAD = 32.68°
m DAB = 18.56°

m CAB = 51.23°

Figure 2.5.2. Angle addition
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Axiom AM-3 (Angle Addition). Suppose that D is a point in the interior
of angle 6 BAC. Then

m 6 BAC = m 6 BAD+m 6 DAC.

Using the notion of congruence, one immediately obtains the following
statement:

Theorem 2.5.2. Let D be a point in the interior of 6 ABC, and let D′ be a
point in the interior of 6 A′B′C′.

(a) If 6 ABD ∼= 6 A′B′D′ and 6 CBD ∼= 6 C′B′D′, then 6 ABC ∼=
6 A′B′C′.

(b) If 6 ABD ∼= 6 A′B′D′ and 6 ABC ∼= 6 A′B′C′, then 6 CBD ∼=
6 C′B′D′.

Proof. Exercise.

Definition 2.5.3. Two angles 6 DAC and 6 DAB form a linear pair in case:

1. Rays
−→
AC and

−→
AB are opposite rays on a line ; i.e. C, A, B are col-

inear, and C A B; and

2. D is not on the line
←→
AB.

C

A

B

D

Figure 2.5.3. Linear pair

Axiom AM-4 (Linear Pair Axiom). If angles 6 DAC and 6 DAB form a
linear pair, then the sum of their measures is 180,

m 6 DAC+m 6 BAD = 180.

Definition 2.5.4. Two angles are called supplementary if the sum of their
measures is 180. Two angles are called complementary if the sum of their
measures is 90.
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Thus the Linear Pair Axiom says that two angles forming a linear pair
are supplementary.

Definition 2.5.5. An angle is called a right angle if its measure is 90. An
angle is called acute if its measure is less than 90, and is called obtuse if its
measure is more than 90.

Theorem 2.5.6. An angle 6 BAD is a right angle if, and only if, there is a
point C on line

←→
AB such that angles 6 BAD and 6 DAC are congruent and

form a linear pair.

Proof. Exercise.

D

C

A

B

Figure 2.5.4. Right angles

Definition 2.5.7. The two rays of a right angle are said to be perpendicular.
Two lines which intersect forming a right angle (and thus four right angles)
are said to be perpendicular.

Line segments are said to be perpendicular if the lines containing them
are perpendicular; the segments themselves are not required to intersect;
they must only lie on perpendicular intersecting lines. The same term is
used for a line segment and a line, a ray and a line segment, etc. which lie
on perpendicular lines. The symbol ⊥ is used to denote perpendicularity.
Thus

←→
AB ⊥ BC means that the line and the segment are perpendicular.

Theorem 2.5.8. Let L be a line, let A be a point on L, and let P be a plane
containing L Then there exists one and only one line M in P intersecting
L at A such that M ⊥ L.
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Proof. Exercise.

Theorem 2.5.9. Let AB be a line segment, let P be the midpoint of AB,
and let P be a plane containing AB Then there exists one and only one
line M in P intersecting AB at P such that M ⊥ AB.

Proof. Exercise.

M

B

A

Figure 2.5.5. Perpendicular bisector

Definition 2.5.10. The line M in P intersecting the segment AB at its mid-
point and perpendicular to AB is called the perpendicular bisector of AB
in P .

When two distinct lines intersect, they form four angles. Namely, sup-
pose that two lines intersect at A, that B,C are points one one of the lines
with B A C, and that B′C′ are points on the other line such that
B′ A C′. Then one has four angles, 6 BAC′, 6 C′AC, 6 C AB′, and
6 B′AB.

Definition 2.5.11. Two angles formed by a pair of intersecting straight
lines is called a vertical pair if they do not share a common ray.

Note that when two lines intersect, there are two vertical pairs among
the four angles which they form. In the notation used above, the pair 6 BAC′,
6 B′AC is a vertical pair, and the pair 6 BAB′, 6 C AC′ is a vertical pair.

Theorem 2.5.12. Two angles forming a vertical pair are congruent.
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C

C'
A

B

B'

Figure 2.5.6. Vertical pair

Proof. Suppose that two distinct lines intersect at A, that B,C are points
one one of the lines with B A C, and that B′C′ are points on the other
line such that B′ A C′. We have to show that 6 BAC′ ∼= 6 B′AC. Note
that the pair of angles 6 BAC′, 6 BAB′ is a linear pair, so the angles are sup-
plementary by Axiom AM-4. Likewise the pair 6 BAB′ , 6 B′AC is a linear
pair, so the angles are supplementary by Axiom AM-4. Thus we have

m 6 BAC′ +m 6 BAB′ = 180, and

m 6 B′AC+m 6 BAB′ = 180,

so m 6 BAC′ = m 6 B′AC, as was to be shown.

Theorem 2.5.13. If one of the angles formed by a pair of distinct intersect-
ing lines is a right angle, then all four angles are right angles.

Proof. Exercise.

Exercise 2.5.1. Let 6 BAC be an angle in a plane P and let D be a
point in P on the same side of←→AC as B. If m 6 DAC < m 6 BAC, then
D is in the interior of the angle 6 BAC.

2.6. Congruence of Triangles
I have previously introduced the notions of congruence of line segments

and of angles: Two line segments are congruent if they have the same length
(distance between endpoints) and two angles are congruent if they have the
same angular measure. I will now define a notion of congruence for trian-
gles: in brief, two triangles are congruent if they can be “matched up” so
that all the “corresponding parts” are congruent. This concept requires a
detailed explanation:
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Consider two triangles4ABC and4DEF. A correspondence between
the two triangles is a bijection (one-to-one and onto function) between the
two sets of vertices {A, B,C} and {D, E, F}. For example, one correspon-
dence is

A←→ E

B←→ D

C←→ F.

We abbreviate this correspondence by

ABC←→ EDF.

F

D

E

C

B

A

Figure 2.6.1. Congruent triangles

There are six possible correspondences between two triangles. (Exer-
cise) A correspondence between two triangles induces bijections between
the sets of sides of the two triangles and between the sets of angles of the
two triangles. For example, the correspondence above induces the bijection

6 A←→ 6 E
6 B←→ 6 D
6 C←→ 6 F

between the sets of angles, and the bijection

AB←→ ED

BC←→ DF

AC←→ EF

between the sets of sides of the two triangles.
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Definition 2.6.1. A correspondence

ABC←→ EDF.

between two triangles4ABC and4EDF is called a congruence if all pairs
of corresponding angles are congruent and all pairs of corresponding sides
are congruent, that is

6 A ∼= 6 E, 6 B ∼= 6 D, 6 C ∼= 6 F,

and

AB ∼= ED, BC ∼= DF, AC ∼= EF.

If the correspondence ABC ←→ EDF is a congruence, we write
4ABC ∼= 4EDF.

In Figure 2.6.1, 4ABC ∼= 4EDF.
When we write 4ABC ∼= 4EDF, we mean that the particular corre-

spondence ABC←→ EDF is a congruence. This is a different assertion
from 4ABC ∼= 4DEF, which says that a different correspondence be-
tween the same triangles is a congruence. However, when we say in words
that two triangles 4ABC and 4EDF are congruent, we mean only that at
least one of the six possible correspondences between the two triangle is a
congruence.

Exercise 2.6.1. (Transitivity of Congruence) Prove: If4ABC∼=4DEF
and 4DEF ∼= 4GH J, then 4ABC ∼= 4GH J.

The basic axiom concerning congruence of triangles is the Side-Angle-
Side axiom:

Axiom SAS Consider a correspondence between two triangles. If
two pairs of corresponding sides are congruent, and if the angles formed
by these sides are congruent, then the correspondence is a congruence.

F
E

D

C

B

A

Figure 2.6.2. Side Angle Side Axiom
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Let us express this with symbols: Consider a correspondence ABC←→
DEF between triangles. Suppose that AB ∼= DE, AC ∼= DF, and 6 A ∼=
6 D. Then 4ABC ∼= 4DEF.

In Figure 2.6.2 the corresponding markings on pairs of sides and angles
indicates congruence of these parts of the triangles. Such markings are a
convenient device for keeping track of congruent parts.

Definition 2.6.2. A triangle is called isosceles if it has two congruent sides.
It is called equilateral if it has all three sides congruent. It is called equian-
gular if it has all three angles congruent.

Theorem 2.6.3 (Isosceles Triangle Theorem). If two sides of a triangle
are congruent, then the angles opposite to these two sides are congruent.

Let us restate the Theorem in symbols: Suppose in a triangle 4ABC
that AB ∼= AC. Then 6 B ∼= 6 C.

Proof. We consider a correspondence between 4ABC and itself, namely
ABC←→ ACB. Under this correspondence, AB←→ AC, AC←→ AB,
and 6 A←→ 6 A. These corresponding parts are congruent, by hypothesis.
Hence, by the SAS axiom, one has4ABC∼=4ACB. Since all correspond-
ing parts of congruent triangles are congruent, we conclude 6 B ∼= 6 C.

Corollary 2.6.4. An equilateral triangle is equiangular.

Proof. Exercise.

.

Theorem 2.6.5 (Angle-Side-Angle Theorem). Consider a correspon-
dence between two triangles. Suppose that two angles and the side
connecting these two angles in one triangle are congruent to the cor-
responding parts of the other triangle. Then the correspondence is a
congruence.

We restate the Theorem in symbols. Consider a correspondence
ABC ←→ DEF between triangles. Suppose that 6 A ∼= 6 D, 6 B ∼= 6 E,
and AB ∼= DE. Then 4ABC ∼= 4DEF. Refer to Figure 2.6.3

Proof. Refer to Figure 2.6.4. According to Corollary 2.3.16, there is a unique
point G on the ray −→DF such that DG ∼= AC.
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E
F

A

B

C

D

Figure 2.6.3. Angle-Side-Angle Theorem

G

F

E

D

C

B

A

Figure 2.6.4. Proof of Angle-Side-Angle Theorem

Then we have

AC ∼= DG, 6 A ∼= 6 D, and AD ∼= DE,

so the SAS axiom 4ABC ∼= 4DEG. But then

6 DEG ∼= 6 B ∼= 6 DEF,

where the first congruence follows from the congruence of triangles4ABC∼=
4DEG and the second by hypothesis. Points F and G are on the same side
of line←→DE. (Why?) Hence by the uniqueness assertion in Axiom AM-2,
the rays −→EF and

−→
EG coincide. Since F and G are both points of intersec-

tion of this ray with the line
←→
DG, we have F = G by Theorem 2.1.1. But

then 4ABC ∼= 4DEF, as was to be shown.
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Theorem 2.6.6. If two angles in a triangle are congruent, then the sides
opposite them are congruent.

Proof. Exercise.

Corollary 2.6.7. If a triangle is equiangular, it is equilateral.

Proof. Exercise.

Combining Corollaries 2.6.4 and 2.6.7, we have:

Theorem 2.6.8. A triangle is equilateral, if, and only if, it is equiangular.

The final congruence criterion for triangles is the Side-Side-Side crite-
rion.

Theorem 2.6.9 (Side-Side-Side Theorem). Consider a correspondence
between two triangles. Suppose that all three pairs of corresponding sides
are congruent. Then the correspondence is a congruence.

We restate the theorem in symbols: Consider an correspondence of tri-
angles ABC←→ DEF. Suppose AB ∼= DE, AC ∼= DF, and BC ∼= EF.
Then 4ABC ∼= 4DEF. Refer to Figure 2.6.5

E
F

A

B

C

D

Figure 2.6.5. Side-Side-Side Theorem

Proof. This is fairly complicated, so the reader may wish to skip it on the
first reading. The first step in the proof is to construct a (congruent) copy of
4DEF sharing one side with 4ABC. By Axiom AM-2, there is a unique
ray
−→
AX such that X and C are on opposite sides of

←→
AB and 6 X AB∼= 6 FED.

By Corollary 2.3.16, there is a unique point C′ on
−→
AX such that AC′ ∼= DF.
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Now, by the SAS axiom we have4DFE ∼=4AC′B. Refer to Figure 2.6.6.
It will now suffice to prove that4ACB ∼= 4AC′B, since the transitivity of
congruences will give the desired result.

Since C and C′ are on opposite sides of
←→
AB, the segment joining them

meets
←→
AB at a point M. There are three possibilities to consider:

1. A M B.
2. M is one of the endpoints of AB.
3. M is not on the segment AB.

M

C'

C

B

A

Figure 2.6.6. Proof Case 1

We start with case (1). See Figure 2.6.6. By the Isosceles Triangle The-
orem 2.6.3 applied to4ACC′m one has 6 ACC′ ∼= 6 AC′C, and by the same
theorem applied to4BCC′, one has 6 BCC′ ∼= 6 BC′C. Since A M B,
it follows that M is in the interior of angles 6 ACB and 6 AC′B, by Theorem
2.4.11. Therefore, two applications of the Angle Addition Axiom AM-3
give m 6 ACB = m 6 ACM + m 6 MCB = m 6 ACC′ + m 6 C′CB, and like-
wise m 6 AC′B = m 6 AC′M + m 6 MC′B = m 6 AC′C + m 6 CC′B. Taking
into account the angle congruences obtained above from the Isosceles Tri-
angle Theorem, one then has m 6 AC′B = m 6 ACB. But then 4AC′B ∼=
4ACB, by the SAS axiom.

Case (2) is easier. One can assume without loss of generality that M =
A. Refer to Figure 2.6.7. Applying the Isosceles Triangle Theorem to4BCC′
gives 6 BCC′ ∼= 6 BC′C. Now an application of the SAS axiom gives
4ACB ∼= 4AC′B.

For case (3), refer to Figure 2.6.8. We can assume without loss of gen-
erality that M A B. Use of the Isosceles Triangle Theorem twice, as
in case (1) gives the congruences 6 ACC′ ∼= 6 AC′C and 6 BCC′ ∼= 6 BC′C.
This time, however, we have A interior to angles 6 BCX = 6 BCC′ and
6 BC′X = 6 BC′C. (Why?) The Angle Addition Axiom gives, therefore,
m 6 BC A = m 6 BCC′ − m 6 ACC′, and m 6 BC′A = m 6 BC′C − m 6 AC′C.
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C'

C

BA

Figure 2.6.7. Proof Case 2

M

C'

C

B

A

Figure 2.6.8. Proof Case 3

Using the congruences obtained from the Isosceles Triangle Theorem then
gives m 6 BC A = m 6 BC′A. Now, as before, the SAS axiom implies that
4AC′B ∼= 4ACB.

Exercise 2.6.2. This is more a project than a simple exercise. Here
is the outline for an alternative proof of the SSS Theorem. If we
knew that 6 A ∼= 6 D, then the desired congruence would follow from
the SAS axiom.

In order to reach a contradiction, suppose that m 6 A 6= m 6 D. We
can suppose without loss of generality that m 6 A > m 6 D. (Other-
wise, just exchange the roles of the two triangles.)

As a first step, construct a triangle 4ABY such that 4ABY ∼=
4DEF, and Y is on the same side of ←→AB as C. Show that Y is in
the interior of the angle 6 C AB

There are three cases to consider
(a) Y is on CB.
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(b) Y and A are on opposite sides of←→CB.
(c) Y and A are on the same side of←→CB.

The first case is easily disposed of. If Y is on CB, then Y = C, as
both are on ray−→BC and both have the same distance to point B. (Use
2.3.16.) But then 6 C AB = 6 Y AB = 6 X AB ∼= 6 FDE, in contradiction
to our assumption.

Show that the other two cases also lead to contradictions. See
Figure 2.6.9 for case (3), where the segment CY is drawn in. Use
the Isosceles Triangle theorem to get congruence of certain angles,
and eventually derive a contradiction. Handle case (2) similarly.

X

Y
C

B

A

Figure 2.6.9. Alternative Proof: Case (b)

Y

C

B

A

Figure 2.6.10. Alternative Proof: Case (a)

Exercise 2.6.3. Show that there are six correspondences between
two triangles 4ABC and 4DEF.

Exercise 2.6.4. Suppose that a triangle 4ABC is isosceles, but not
equilateral. How many different congruences are there between the
triangle and itself?
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Exercise 2.6.5. Suppose that a triangle 4ABC is equilateral. How
many different congruences are there between the triangle and it-
self?

Exercise 2.6.6. In Figure 2.6.11, suppose that point X is the mid-
point of segments AB and CD. Which triangles in the figure are
congruent? Prove your assertion.

C

D

X
B

A

Figure 2.6.11. Exercise 2.6.6

Exercise 2.6.7. In Figure 2.6.12, suppose that point X is the midpoint
of segment AB, and that CD⊥ AB. Which triangles in the figure are
congruent? Prove your assertion.

D

C

X
A

B

Figure 2.6.12. A Kite

Exercise 2.6.8. Refer again to Figure 2.6.12. Suppose now that point
X is the midpoint of segment AB, and that 6 C AX ∼= 6 CBX. Which
triangles in the figure are congruent? Prove your assertion.

Exercise 2.6.9. Refer again to Figure 2.6.12. Suppose now that 6 ACX ∼=
6 BCX and AC ∼= BC. Which triangles in the figure are congruent?
Prove your assertion.
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2.7. Some geometric constructions
In this section, we will discuss some geometric constructions (construc-

tions with straightedge and compass). I am putting these constructions here
in the text because they make nice illustrations of the use of congruent tri-
angles. The constructions depend, however, on two “self-evident” facts,
which we will be able to prove only later.

First we recall the definition of a circle:

Definition 2.7.1. Let P be a plane, A ∈ P a point, and r > 0 a positive
number. The circle with center A and radius r in the plane P is the set of
all points X ∈ P satisfying d(A, X) = r.

FACT A: Let L be a line and A a point not contained on the line L let P be
the plane containing L and A. If r > 0 is sufficiently large, then the circle
of radius r about A in P intersects L in exactly two points.

L A

Figure 2.7.1. Circle and Line

FACT B: Let A and B be two points in the plane P with d(A, B) = c. Let
r > 0 and let S be the circle in P centered at A with radius r. Let R be any
positive number between |c− r| and c+ r, and let T be the circle in P of
radius R centered at B. The S and T have exactly two point of intersection,
and furthermore, the two points of intersection are on opposite sides of the
line
←→
AB.

The proofs of these two facts will depend on the Pythagorean theorem,
and will be given in in Section xxxx. So logically, this section belongs af-
ter Section xxxx. The material in this section may not be used, except
within this section, until the proofs of FACTS A and B are obtained.

Since the two FACTS depend on the Pythagorean theorem, it won’t do
any harm to allow the use of this theorem in this section as well.
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B

A

Figure 2.7.2. Two Circles

Theorem 2.7.2 (Pythagorean theorem). Let 4ABC be a right triangle,
with right angle at A. Let x, y, z denote the lengths of the sides AB, AC,
and BC. Then z2 = x2 + y2.

Construction 2.7.3 (Midpoint of a line segment). Consider a line seg-
ment AB in a plane P . We will construct the midpoint of the line segment.

Let c denote d(A, B). Draw the circles S and T in P of radius c cen-
tered at A and B respectively. Let X and Y be the two points of intersection
of the two circles (which exist according to FACT B). Since X and Y are on
opposite sides of

←→
AB, the segment XY intersects lineAB at a point M. It

is asserted that M is the midpoint of AB.

M

Y

X

BA

Figure 2.7.3. Midpoint Construction
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Proof. Refer to Figure 2.7.3. First of all, one can show, using the Pythagorean
theorem that M is between A and B. (One has to consider two cases: M is
one of the endpoints of AB, and M is not contained in the segment AB, and
show that each of these cases is impossible. This is left as an exercise.)

By construction all of the segments AX, AY , AB, BX, BY are con-
gruent, with length c. By the Isosceles Triangle Theorem 2.6.3 applied to
triangles4AX B and4AY B we have the following congruences of angles:

6 X AB ∼= 6 X BA, 6 Y AB ∼= 6 Y BA,(2.7.1)

Because the diagonals of the quadrilateral AY BX cross, each vertex of the
quadrilateral is in the interior of the opposite angle (Exercise ??). Therefore
the Angle Addition Axiom AM-3 tells us that

m 6 X AB+m 6 Y AB = m 6 X AY,

m 6 X BA+m 6 Y BA = m 6 X BY.
(2.7.2)

Combining this with Equation 2.7.1 gives

6 X AY ∼= 6 X BY.(2.7.3)

Now the SAS axiom implies that4X AY ∼=4X BY , and therefore 6 AX M ∼=
6 BX M. Since AX ∼= BX and M X ∼= M X, another use of the SAS axiom
tells us that 4X AM ∼= 4X BM. Consequently, AM ∼= M B, as was to be
shown.

This finishes the proof of the construction. Note that we also may con-
clude that 6 AM X ∼= 6 BM X. But these two angles form a linear pair, so
it follows that they are right angles. Thus we have also constructed a per-
pendicular line segment meeting AB at the midpoint.

Construction 2.7.4 (Perpendicular to a line, at a point on the line). Let L
be a line and P a point on the line, and let P be a plane containing L. We
will construct a line segment in P perpendicular to L and meeting L at P.

Draw a circle in P of arbitrary positive radius r; this circle will meet
L at two points A and B such that A P B. Now, of course, P is the
midpoint of the segment AB.

Do the midpoint construction (Construction 2.7.3) on segment AB, ob-
taining a segment XY meeting AB at P.

Then XY ⊥ L.

Proof. Let f be a coordinate function on L satisfying f (P) = 0. Take A
to be the point with f (A) = r and B the point with f (B) = −r. Then
A P B, and d(P, A) = d(P, B) = r, so A and B are on the circle.
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Now the remarks following the proof of the midpoint construction show
that the segment XY obtained by the midpoint construction is perpendicular
to the line L at P.

Construction 2.7.5 (Perpendicular segment from a point to a line). Refer
to Figure 2.7.4. Let L be a line and P a point not on the line. We will
construct a perpendicular line segment from P to a point on L.

Let P denote the plane containing L and P. Draw a sufficiently large
circle in the plane P centered at P, obtaining two points of intersection A
and B of the circle with the line L. (FACT A.)

Now construct the midpoint M of the segment AB on L.
It is asserted that PM is perpendicular to L.

Proof. Exercise.

L

B

A

P

Figure 2.7.4. Perpendicular Construction

Exercise 2.7.1. Prove that PM is perpendicular to L.

Construction 2.7.6 (Bisector of an angle). Refer to Figure 2.7.5. Let
6 BAC be an angle in a plane P . Draw a circle of arbitrary positive ra-
dius r in the plane P centered at A. The circle intersects rays

−→
AB and

−→
AC

at points X and Y respectively.
Now construct the midpoint M of the segment XY and draw the ray−→

AM. It is asserted that
−→
AM bisects the angle 6 BAC.
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In more detail, the assertion is that the ray
−→
AM lies in the interior of the

angle 6 BAC, and 6 BAM ∼= 6 C AM.

Proof. Exercise.

M

B

C

Y

X

A

Figure 2.7.5. Angle Bisector

Exercise 2.7.2. Prove that −→AM bisects the angle 6 BAC, and that it is
the only ray bisecting the angle.

2.8. Bisectors and Perpendiculars
We are NOT going to use the material from the previous section in this

section, because that material depended on as yet unproved statements.
Recall that we already have the following theorems (whose proofs were

left as exercises.)

Theorem 2.8.1. Every line segment has a unique midpoint.

Theorem 2.8.2. Let L be a line, let A be a point on L, and let P be a plane
containing L Then there exists one and only one line M in P intersecting
L at A such that M ⊥ L.
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Theorem 2.8.3. Let AB be a line segment, let P be the midpoint of AB,
and let P be a plane containing AB. Then there exists one and only one
line M in P intersecting AB at P such that M ⊥ AB.

M

B

A

Figure 2.8.1. Perpendicular bisector

Now that we have a theory of congruent triangles, we can characterize
the perpendicular bisector of a line segment as follows:

Theorem 2.8.4 (Perpendicular Bisector Theorem). Let AB be a line seg-
ment, let P be the midpoint of AB, and let P be a plane containing AB.
Let M denote the perpendicular bisector of AB in P . The following are
equivalent for a point X ∈ P :

(a) X is on the perpendicular bisector M.
(b) X is equidistant from A and B; that is, d(X, A) = d(X, B).

See Figure 2.8.2.

Proof. Let X be a point on the perpendicular bisector M. Consider the tri-
angles4APX and4BPX. One has AP ∼= BP, since P is the midpoint of
AB, 6 APX ∼= 6 BPX, since both are right angles, and PX ∼= PX. There-
fore, by the SAS congruence axiom, 4APX ∼= 4BPX, and in particular
AX ∼= BX. So X is equidistant from A and B.

Conversely, let X be a point in the plane P which is equidistant from
A and B. Again consider the triangles4APX and4BPX. One has AP ∼=
BP, since P is the midpoint of AB, AX ∼= BX, by hypothesis, and PX ∼=
PX. Therefore, by the SSS congruence theorem,4APX ∼=4BPX, and in
particular 6 APX ∼= 6 BPX. Since these two angles form a linear pair, both
are right angles. But that means that X lies on the perpendicular bisector
of AB.



2.8. BISECTORS AND PERPENDICULARS 59

X

P

B

A

Figure 2.8.2. Perpendicular Bisector Theorem

Continuing with this theme of bisectors and perpendiculars, we now
show:

Theorem 2.8.5. Every angle has a unique bisector. That is, given an an-
gle 6 BAC in a plane P , there is a unique ray

−→
AD in P such that

−→
AD is

contained in the interior of angle 6 BAC and 6 DAB ∼= 6 DAC.

A
B

C

Figure 2.8.3. Angle bisector

Proof. The proof follows the line of the construction given in the previous
section (but, of course, we do not use the construction of the midpoint of a
segment given there.) Refer to Figure 2.7.5.

Let r be any positive number, and let X and Y be points on
−→
AC and

−→
AB

respectively, such that d(A, X) = d(A,Y ) = r (Corollary 2.3.16). Con-
sider the segment XY (which lies in P by Axiom I-3. Let M be the midpoint
of this segment. I claim that

−→
AM is a bisector of angle 6 BAC.
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First, M is in the interior of 6 BAC by Theorem 2.4.11, and
−→
AM is in

the interior of 6 BAC by Theorem 2.4.10.
By the SSS Congruence Theorem, 4AM X ∼= 4AMY . (Why are all

the corresponding sides congruent?) It follows that 6 X AM ∼= 6 Y AM, as
was to be shown.

Uniqueness follows from the uniqueness statement in Axiom AM-2, or
from the following exercise.

Theorem 2.8.6 (Angle Bisector Theorem). Let 6 BAC be an angle in a
plane P . and let M be a point in the interior of the angle. Let X and Y
be points on the rays

−→
AB and

−→
AC respectively such that AX ∼= AY. Prove

that the following are equivalent:

(a) M is on the bisector of the angle 6 BAC.
(b) M is equidistant from X and Y. See Figure 2.8.4.

M

X

Y

A
B

C

Figure 2.8.4. Angle Bisector Theorem

Proof. Exercise.

.

Exercise 2.8.1. Refer to Figure 2.7.5. In that figure, assume that
AX ∼= AY , that ray −→AM lies in the interior of 6 Y AX, that M is the in-
tersection of−→AM with segment XY , and that 6 X AM ∼= 6 Y AM. Prove
that M is the midpoint of XY .

Using the theory of congruent triangles, we can also now prove the ex-
istence of a perpendicular line from a given point to a given line not con-
taining the point:
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Theorem 2.8.7 (Existence of Perpendiculars). Let L be line and let P be a
point not on the line L. Then there is a line containing P a perpendicular
to L.

M

P'

P

B

A

Figure 2.8.5. Existence of Perpendiculars

Remark 2.8.8. One would certainly expect that the perpendicular is unique,
and this is so, but we have to wait a little to prove this fact.

Proof. See Figure 2.8.5. Choose any two points A and B on the line L,
and consider the triangle 4PAB. First we construct another point P′ on
the opposite side of L from P such that 4PAB ∼= 4P′AB. (Compare the
proof of the SSS congruence theorem.) This is done as follows:

By Axiom AM-2, there is a unique ray
−→
AX such that X and P are on

opposite sides of L and 6 X AB ∼= 6 PAB. By Corollary 2.3.16, there is a
unique point P′ on

−→
AX such that AP′ ∼= AP. Now, by the SAS axiom we

have 4PAB ∼= 4P′AB.
The segment PP′ intersects line L at some point M since P and P′ are

on opposite sides of the line.
If M happens (by extraordinary luck) to coincide with A, then we al-

ready have 4PM B ∼= 4P′M B, and in particular 6 PM B ∼= 6 P′M B. But
these two angles form a linear pair, and therefore are right angles. Hence←→
PP′ is perpendicular to L.

If M is not equal to A, we consider the triangles4PAM and4P′AM,
and show that they are congruent. We have PA∼= P′A and 6 PAB∼= 6 P′AB
by the congruence4PAB∼=4P′AB. Since also AM is congruent to itself,
the SAS congruence axiom gives 4PAM ∼= 4P′AM. But then in partic-
ular, 6 AM P ∼= 6 AM P′. As these two angles form a linear pair, both are

right angles. Hence
←→
PP′ is perpendicular to L.
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2.9. Exterior Angles, Transversals, and Par-
allels

Consider a triangle 4ABC and extend the side BA beyond vertex A,
as shown in Figure 2.9.1. The angle 6 C AX is called an exterior angle of
triangle 4ABC at vertex A.

B

A

C

X

Figure 2.9.1. Exterior Angle

A second exterior angle at A is formed by extending the side C A be-
yond A. The two exterior angles at A form a vertical pair, so they have the
same angular measure. Furthermore, either exterior angle forms a linear
pair with angle 6 A, so 6 A and an exterior angle at A are supplementary.

The following inequality is crucial to the theory of parallel lines:

Theorem 2.9.1. Let 4ABC be a triangle, and let α be the measure of the
exterior angle at vertex A. Then α > m( 6 B) and α > m( 6 C).

Proof. The proof is slightly tricky, so we will skip it for now.

Corollary 2.9.2. Two angles of a triangle cannot be supplementary. In
particular, a triangle cannot have two right angles.

Proof. Suppose triangle 4ABC has supplementary angles at vertices A
and B, m( 6 A)+ m( 6 B) = 180. Since angle 6 A is also supplementary to
an exterior angle at vertex A, it follows that the measure of this exterior
angle is equal to m( 6 B). But this contradicts the previous theorem.

Corollary 2.9.3. (Uniqueness of perpendiculars) Let L be a line, and let P
be a point not on the line. Then there is exactly one line M which contains
P and which is perpendicular to L.
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Proof. Existence of such line was shown in Theorem 2.8.7. Now suppose
there were two such lines, intersecting L at points Q and R. Then triangle
4PQR has two right angles, at vertices Q and R, contradicting the previous
corollary.

Now consider two (distinct) lines L and L′ in a plane P . Let T be a
third line in P which intersects L at A and L′ at A′. Line T is said to be a
transversal to lines L and L′.

T

L'

L

4 '

3 '
2 '

1 '

4

32

1

Figure 2.9.2. Transversal

T forms four angles with L at A, and four angles with L′ at A′. Refer
to Figure 2.9.2, where we have labeled the four angles at A as 6 1, 6 2, 6 3,
6 4, and the four angles at A′ as 6 1, 6 2, 6 3, 6 4. One says that the pairs
( 6 1, 6 1′), ( 6 2,2′), etc. are corresponding angles.

One says that the pairs ( 6 2′, 6 4) and ( 6 3′, 6 1) are pairs of alternate
interior angles.

Exercise 2.9.1. Give a definition of corresponding angles which does
not depend on pointing at a diagram.

Exercise 2.9.2. Give a definition of alternating interior angles which
does not depend on pointing at a diagram.

Exercise 2.9.3. Let L and L′ be two (distinct) lines in plane and let
T be a transversal to L and L′. Prove: If one pair of corresponding
angles is congruent, then all four pairs of corresponding angles are
congruent.
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Exercise 2.9.4. Let L and L′ be two (distinct) lines in plane and let T
be a transversal to L and L′. Prove: If one pair of alternate interior
angles is congruent, then both pairs of alternate interior angles are
congruent.

Exercise 2.9.5. Let L and L′ be two (distinct) lines in plane and let
T be a transversal to L and L′. Prove: A pair of alternate interior
angles is congruent if, and only if, a pair of corresponding angles is
congruent.

Definition 2.9.4. Two distinct lines are parallel if they are coplanar and
have empty intersection. Any line is parallel to itself.

Theorem 2.9.5. Let L and L′ be two (distinct) lines in plane and let T be
a transversal to L and L′. Suppose that a pair of alternate interior angles
is congruent (or equivalently, a pair of corresponding angles is congruent.
Then the lines L and L′ are parallel.

Proof. It follows from the exercises that all four pairs of corresponding an-
gles are congruent, and both pairs of alternate interior angles are congruent.
Let A and A′ denote the points of intersection of T with L and L′ respec-
tively.

Suppose that L and L′ are not parallel, and let P be the unique point
of intersection of L and L′. Let R be a point on L such that P A R.
Then angles 6 RAA′ and 6 PAA′ are a pair of alternate interior angles, so
are, by hypothesis, congruent. But angles 6 RAA′ and 6 PAA′ form a linear
pair, so they are supplementary. It follows that angles 6 PAA′ and 6 PA′A
are supplementary. But these are two angles of the triangle4PAA′, so they
cannot be supplementary by Corollary 2.9.2. This contradiction shows that
the two lines L and L′ are parallel.

Corollary 2.9.6. Let L be a line and P a point not on the line L. Then there
is (at least one) line in the plane P determined by L and P which contains
the point P and is parallel to L.

Proof. Let T be the unique line containing P which intersects L and is per-
pendicular to L. Let L′ be the unique line in P which contains P and is
perpendicular to T . Then T is transversal to L and L′, and is perpendicu-
lar to both L and L′. It follows that all pairs of corresponding angles are
congruent, so the lines L and L′ are parallel.
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R

A'

A

P

Figure 2.9.3. Proof of Parallelism

We now come to the final axiom of plane geometry:

Axiom PAR. Let L be a line and P a point not on the line L. Then
there is exactly one line in the plane P determined by L and P which
contains the point P and is parallel to L.

Theorem 2.9.7. Let L and L′ be parallel lines in a plane P , and let T be a
transversal to L and L′. Then corresponding angles for the triple (L, L′, T )
are congruent.

Proof. Either all pairs of corresponding angles are congruent or none are.
Suppose that no pair of corresponding angles is congruent.

Let B and B′ be points on L and L′ respectively, which lie on the same
side of T . Let Q be a point on T such that A A′ Q. Then angles
6 QAB and 6 QA′B′ are corresponding angles, so not congruent. By the
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axiom of angle measure, Axiom AM-2, there is a point B′′ on the same side
of T as B and B′ such that 6 QA′B′′ ∼= 6 QAB. Furthermore B′′ does not
lie on line L′, because then B′′ would lie on ray

−−→
A′B′ and 6 QA′B′ would

equal 6 QA′B′′, so congruent to 6 QAB, contrary to our assumption. So let
L′′ denote the line A′B′′.

Then T is a transversal to L and L′′, and corresponding angles for the
triple (L, L′′, T ) are congruent, so L and L′′ are parallel by Theorem 2.9.5.

But then L′ and L′′ are two distinct lines, both containing point A′ and
both parallel to L, contradicting Axiom PAR. This contradiction shows that
corresponding angles for the triple (L, L′, T ) are congruent.

Corollary 2.9.8. Let L and L′ be distinct lines in a plane P , and let T be a
transversal to L and L′. Then L is parallel to L′ if, and only if, correspond-
ing angles for the triple (L, L′, T ) are congruent.

Corollary 2.9.9. The sum of the measures of the angles of a triangle is 180.

B'

C'

B

C

A

Figure 2.9.4. Sum of Angles in a Triangle

Proof. Consider a triangle 4ABC in a plane P . Let L′ be the unique line
in P which contains A and which is parallel to L =←→BC .

Let B′ be a point on L′ which is on the same side of
←→
AC as B. Then an-

gles 6 B′AB and 6 C are alternate interior angles for the triple (L, L′,←→AC )
(two parallel lines and a transversal). Hence 6 B′AB ∼= 6 C.

Let C′ be a point on L′ which is on the same side of
←→
AB as C. Arguing

as above, one finds that 6 C′AC ∼= 6 B.
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Using axioms of angle measure, one finds that m( 6 B′AB)+m( 6 A)+
m( 6 C′AC) = 180. Therefore by the congruences observed in the last two
paragraphs, m( 6 B)+m( 6 A)+m( 6 C) = 180.

Exercise 2.9.6. Consider a triangle 4ABC. The measure of the ex-
terior angle at vertex A is equal to the sum of the measures of the
angles ate B and C.

Consider four distinct points A, B,C, D in a plane P . Suppose that no
three of the points are colinear, and that the segments AB, BC,CD, DA
intersect only at endpoints of the segments. Then the union of the four seg-
ments is called a quadrilateral. The segments are called the sides of the
quadrilateral. Two sides are called adjacent if they intersect (at a common
endpoint); two sides which are not adjacent are called opposite.

D

C

B

A

Figure 2.9.5. Quadrilateral

The angles of the quadrilateral are 6 A = 6 DAB, 6 B = 6 ABC, 6 C =
6 BCD, and 6 D = 6 CDA.

The points A, B,C, D are called the vertices of the quadrilateral. Two
vertices are said to be adjacent if the segment which they determine is a side
of the quadrilateral; otherwise the vertices are said to be opposite. Two an-
gles of the quadrilateral are said to be adjacent if their vertices are adjacent
vertices; otherwise, they are said to be opposite. The two segments joining
opposite vertices are called the diagonals of the quadrilateral.

A quadrilateral is called a parallelogram if opposite sides are parallel.
It is called a rectangle if all four angles are right angles. It is called a rhom-
bus if it is a parallelogram with all four sides congruent. It is called a square
if it is a rectangle with all four sides congruent.

Exercise 2.9.7. Prove: A diagonal of a parallelogram divides the par-
allelogram into two congruent triangles.
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Exercise 2.9.8. Prove: Opposite sides of a parallelogram are con-
gruent. Opposite angles of a parallelogram are congruent. Adjacent
angles of a parallelogram are supplementary.

Exercise 2.9.9. Prove: The two diagonals of a parallelogram bisect
each other.

Exercise 2.9.10. Prove: Rectangles exist.

Exercise 2.9.11. Prove: Rectangles are parallelograms. Therefore,
opposite sides of a rectangle are congruent, and diagonals of a
rectangle bisect each other.

Exercise 2.9.12. Prove: The diagonals of a rhombus are perpendic-
ular bisectors of one another. This is in particular true of squares.


