Chapter 1

Logic and Sets

1.1. Logical connectives

1.1.1. Unambiguous statements. Logic is concerned first of all with
the logical structure of statements, and with the construction of complex
statements from simple parts. A statement is a declarative sentence, which
is supposed to be either true or false.

A statement must be made completely unambiguousin order to bejudged
as true or false. Often this requires that the writer of a sentence has es-
tablished an adequate context which allows the reader to identify all those
things referred to in the sentence. For example, if you read in a narrative:
“Heis John’s brother,” you will not be able to understand this simple as-
sertion unless the author has already identified John, and also alowed you
to know who “he” issupposed to be. Likewise, if someone givesyou direc-
tions, starting “ Turn left at the corner,” you will be quite confused unless
the speaker also tellsyou what corner and fromwhat direction you are sup-
posed to approach this corner.

The same thing happensin mathematical writing. If you run acrossthe
sentence X2 > 0, you won't know what to make of it, unless the author
has established what x is supposed to be. If the author has written, “ Let x
be any real number. Then x2>0," then you can understand the statement,
and seethat itistrue.

A sentence containing variables, which is capable of becoming an an
unambiguous statement when the variables have been adequately identi-
fied, is called a predicate or, perhaps less pretentiously, a statement-with-
variables. Such a sentence is neither true nor false (nor comprehensible)
until the variables have been identified.

Itisthejob of every writer of mathematics (you, for example!) to strive
to abolish ambiguity. The first rule of mathematical writing is this: any



2 1. LOGIC AND SETS

symbol you use, and any object of any sort to which you refer, must be ad-
equately identified. Otherwise, what you write will be meaningless or in-
comprehensible.

Our first task will be to examine how simple statements can be combined
or modified by means of logical connectives to form new statements; the
validity of such a composite statement depends only on the validity of its
simple components.

The basic logical connectives are and, or, not, and if...then. We con-
sider thesein turn.

1.1.2. Theconjunction and. For statements A and B, the statement
“A and B” istrue exactly when both A and B aretrue. Thisis convention-
aly illustrated by atruth table:

A and B
t
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The table contains one row for each of the four possible combinations
of truth values of A and B; the last entry of each row is the truth value of
“A and B” corresponding to the given truth values of A and B.

For example:

e “Julius Caesar was the first Roman emperor, and Wilhelm 11 was
the last German emperor” istrue, because both parts are true.

o “Julius Caesar was the first Roman emperor, and Peter the Great
was the last German emperor” is false because the second part is
false.

o “Julius Caesar was the first Roman emperor, and the Seventeenth
of May isNorwegian independenceday.” istrue, because both parts
aretrue, but it isafairly ridiculous statement.

e “2 < 3,and x isthe area of a circle of radius 1" is true because
both parts are true.

1.1.3. Thedigunction or. For statements A and B, the statement “A
or B” istrue when at |east one of the component statementsistrue. Hereis
the truth table:
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AorB
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In everyday speech, “or” sometimesistaken to mean “one or the other,
but not both,” but in mathematicsthe universal conventionisthat “ or” means
“one or the other or both.”

For example:

e “Julius Caesar wasthefirst Roman emperor, or Wilhelm 1 wasthe
last German emperor” istrue, because both parts are true.

o “ JuliusCaesar wasthefirst Roman emperor, or Peter the Great was
the last German emperor” istrue because the first part is true.

o “Julius Caesar was the first Chinese emperor, or Peter the Great
wasthelast German emperor.” isfalse, becauseboth partsarefalse.

e “2 < 3,0r mristheareaof acircleof radius 2" istrue because the
first part istrue.

1.1.4. The negation not. The negation “not(A)” of a statement A is
true when A isfalse and false when A istrue.

A | not(A)
t f
f t

Of course, given an actual statement A, we do not generally negate it
by writing “not(A).” Instead, we employ one of various means afforded by
our natural language.

Examples:

e Thenegationof “ 2 < 3" is* 2> 3".

e The negation of “ Julius Caesar was the first Roman emperor.” is
“ Julius Caesar was not the first Roman emperor.”

e Thenegation of “ | amwilling to compromiseon thisissue.” isl am
unwilling to compromise on thisissue.”

1.1.5. Negation combined with conjunction and disjunction. Atthis
point we might try to combine the negation “not” with the conjunction “and”
or the disjunction “or.” We compute the truth table of “not(A and B),” as
follows:
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A | B | AandB | not(A and B)
t|t t f
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flt f t
flf f t

Next, we observe that “not(A) or not(B)” has the same truth table as
“not(A and B).”

not(A) | not(B) | not(A) or not(B)
f f f
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We say that two statement formulassuch as* not(A and B)” and “ not(A)
or not(B)” are logically equivalent if they have the same truth table; when
we substitute actual statementsfor A and B inthelogically equivalent state-
ment formulas, we end up with two composite statements with exactly the
same truth value; that isoneistrueif, and only if, the other istrue.

What we have verified with truth tables also makes perfect intuitive
sense: “A and B” isfalseprecisely if not both A and B aretrue, that iswhen
one or the other, or both, of A and B isfase.

Exercise 1.1.1. Check similarly that “not(A or B)” is logically equiv-
alent to “not(A) and not(B),” by writing out truth tables. Also verify
that “not(not(A))” is equivalent to “A,” by using truth tables.

Thelogical equivaence of “not(A or B)” and ‘not(A) and not(B)” aso
makesintuitive sense. “A or B” istruewhen at least one of A and B istrue.
“A or B” isfase when neither A nor B istrue, that is when both are false.

Examples:

e The negation of “ Julius Caesar was the first Roman emperor, and
WIhelm Il was the last German emperor” is“ Julius Caesar was
not the first Roman emperor, or Wilhelm Il was not the last German
emperor.” Thisisfalse.

e The negation of “ Julius Caesar was the first Roman emperor, and
Peter the Great was the last German emperor” is“ Julius Caesar
was not the first Roman emperor, or Peter the Great was not the last
German emperor.” Thisistrue.

e The negation of “ Julius Caesar was the first Chinese emperor, or
Peter the Great wasthelast German emperor” “ Julius Caesar was
not the first Chinese emperor, and Peter the Great was not the last
German emperor.” Thisistrue.
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e Thenegation of “2 < 3, or wisthearea of acircle of radius2” is
“2> 3, and xr isnot thearea of acircle of radius 2.” Thisisfalse,
because the first part is false.

1.1.6. Theimplicationif...then. Next, weconsider theimplication* if
A thenB” or“ AimpliesB.” We define“if A, then B” to mean “not(A and
not(B)),” or, equivalently, “not(A) or B”; thisisfair enough, since we want
“if A, then B” to mean that one cannot have A without also having B. The
negation of “A impliesB” isthus“A and not(B)”.

Exercise 1.1.2. Write out the truth table for “A implies B” and for its
negation.

Definition 1.1.1. The contrapositive of the implication “ A implies B” is
“not(B) implies not(A).” The converse of the implication “ AimpliesB” is
“BimpliesA”.

The converse of atrue implication may be either true or false. For ex-
ample:
e Theimplication“If —3 > 2, then 9 > 4” istrue. The converseim-
plication“ If 9 > 4, then (—3) > 2" isfase.
However, the contrapositive of a true implication is always true, and the
contrapositive of afalseimplication is alwaysfalse, asis verified in Exer-
cise1.1.3.

Exercise 1.1.3. “Aimplies B” is equivalent to its contrapositive “not(B)
implies not(A).” Write out the truth tables to verify this.

Exercise 1.1.4. Sometimes students jump to the conclusion that “A
implies B” is equivalent to one or another of the following: “A and
B, “B implies A", or “not(A) implies not(B).” Check that in fact “A
implies B” is not equivalent to any of these by writing out the truth
tables and noticing the differences.

Exercise 1.1.5. Verify that “A implies (B implies C)” is logically equiv-
alent to “(A and B) implies C,” by use of truth tables.

Exercise 1.1.6. Verify that “A or B” is equivalent to ‘if ‘not(A), then
B,” by writing out truth tables. (Often a statement of the form “A or
B” is most conveniently proved by assuming A does not hold, and
proving B.)

The use of the connectives “and,” and “not” in logic and mathematics
coincide with their use in everyday language, and their meaning is clear.
The use of “or” in mathematics differs only slightly from everyday use, in
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that we insist on using the inclusive rather than the exclusive or in mathe-
matics.

The use of “if ... then” in mathematics, however, is alittle mysterious.
Inordinary speech, we require some genuine connection, preferably acausal
connection between the“if” and the “then” in order to accept an “if ... then”
statement as sensible and true. For example:

e If you run an engine too fast, you will damage it.
o |f it rainstomorrow, we will have to cancel the picnic.
e 2<3implies3/2 > 1.

These are sensible uses of ‘if ...then” in ordinary language, and they in-
volve causality: misuse of the engine will cause damage, rain will cause
the cancellation of the picnic, and 2 being less than 3 is an explanation for
3/2 being greater than 1.

On the other hand, the implications:

o |fthe Seventeenth of May isNorwegian independenceday, then Julius
Caesar was the first emperor of Rome.
e 2 < 3impliest > 3.14.

would ordinarily be regarded as nonsense, as modern Norwegian history
cannot have had any causal influence on ancient Roman history, and thereis
no apparent connection between thetwo inequalitiesin the second example.
But according to our defined use of “if ...then,” both of these statements
must be accepted as atrue. Even worse:

e IftheEighteenth of May isNorwegian independenceday, then Julius
Caesar was the last emperor of Germany.
e 12> 3then+/2isrational.

arealso true statements, according to our convention. However unfortunate
these examples may seem, we find it preferable in mathematics and logic
not to require any causal connection between the“if” and the “then,” but to
judge the truth value of an implication “if A, then B” solely on the basis of
the truth values of A and B.

1.1.7. Somelogical expressions. Hereareafew commonly used log-
ical expressions:
“Aif B means“B impliesA.”
“Aonly if B” means“A impliesB.”
“Aif, and only if, B” means“A implies B, and B implies A.”
“Unless” means “if not,” but “if not” is equivalent to “or.” (Check
thisl)
e Sometimes “but” is used instead of “and” for emphasis.
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1.2. Quantified statements

1.2.1. Quantifiers. One frequently makes statements in mathematics
which assert that all the elements in some set have a certain property, or
that there exists at least one element in the set with a certain property. For
example:

e For every rea number x, one has x> > 0.

e ForalllinesL and M, if L # M and L N M isnon-empty, then L N
M consists of exactly one point.

e There exists apositive real number whose squareis 2.

e Let L bealine. Then there exist at least two pointson L.

Statements containing one of the phrases “for every”, “for al”, “for
each”, etc. are said to have a universal quantifier. Such statements typi-
cally have the form:

e For all x, P(x),

where P(X) is some assertion about x. The first two examples above have
universal quantifiers.

Statements containing one of the phrases“thereexists,” “thereis,” “one
can find,” etc. are said to have an existential quantifier. Such statements
typically have the form:

e There exists an x such that P(x),

where P(X) issome assertion about x. Thethird and fourth examplesabove
contain existential quantifiers.

Onething to watch out for in mathematical writing isthe use of implicit
universal quantifiers, which are usually coupled with implications. For ex-
ample,

e If X isanon-zero real number, then x? is positive
actually means,

e For al real numbersx, if x # 0, then x? is positive,

” ou LU

or
e For al non-zero real numbers x, the quantity x? is positive.

1.2.2. Negation of Quantified Statements. Let us consider how to
form the negation of sentences containing quantifiers. The negation of the
assertion that every x has a certain property is that some x does not have
this property; thus the negation of

e For every x, P(X).
is
e There exists an x such that not P(x).
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For example the negation of the (true) statement
e For al non-zero real numbers x, the quantity x? is positive
isthe (false) statement
e There exists anon-zero real numbers x, such that x> < O.
Similarly the negation of a statement
e There exists an x such that P(x).

e For every x, not P(x).
For example, the negation of the (true) statement
e Thereexistsareal number x such that x* = 2.
isthe (false) statement
e For all real numbers x, x? # 2.

In order to express complex ideas, it is quite common to string together
several quantifiers. For example

e For every positivereal number X, thereexistsa positive real number
y such that y? = x.
e For every natural number m, there exists a natural number n such
that n > m.
e For every pair of distinct points p and q, there exists exactly one
line L such that L contains p and g.
All of these are true statements.

There is arather nice rule for negating such statements with chains of
quantifiers: one runs through chain changing every universal quantifier to
anexistential quantifier, and every existential quantifier to auniversal quan-
tifier, and then one negates the assertion at the end.

For example, the negation of the (true) sentence

o For every positivereal number x, thereexistsa positivereal number
y such that y? = x.

isthe (false) statement

e There exists a positive real number x such that for every positive
real number y, one has y? # x.

1.2.3. Implicit universal quantifiers. Frequently “if ... then” sentences
in mathematics also involve the universal quantifier “for every”.

o For every real number x, if x # 0, then X2 > 0.

Quite often the quantifier isonly implicitly present; in place of the sentence
above, it is common to write

e If xisanon-zero real number, then x2 > 0.
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The negation of thisis not
e Xisanon-zero real number and x2 < 0,

as onewould expect if oneignored the (implicit) quantifier. Because of the
universal quantifier, the negation is actually

e There exists a real number x such that x # 0 and x2 < 0.

It might be preferable if mathematical writers made all quantifiers explicit,
but they don’t, so one must look out for and recognize implicit universal
quantifiersin mathematical writing. Here are some more examples of state-
ments with implicit universal quantifiers:

o Iftwodistinct linesintersect, their inter section contains exactly one
point.

o If p(x) isapolynomial of odd degree with real coefficients, then p
has areal root.

Something very much like the use of implicit universal quantifiersalso
occurs in everyday use of implications. In everyday speech, “if ... then”
sentences frequently concern the uncertain future, for example:

(%) Ifit rainstomorrow, our picnic will be ruined.

One notices something strange if one forms the negation of this state-
ment. (When oneistrying to understand an assertion, it is often illuminat-
ing to consider the negation.) According to our prescription for negating
implications, the negation ought to be:

e It will rain tomorrow, and our picnic will not be ruined.

But thisissurely not correct! The actual negation of the sentence () ought
to comment on the consequences of the weather without predicting the
weather:

(%) Itispossiblethat it will rain tomorrow, and our picnic will not
be ruined.

What is going on here? Any sentence about the future must at least
implicitly take account of uncertainty; the purpose of the original sentence
(x) isto deny uncertainty, by issuing an absol ute prediction:

e Under all circumstances, if it rainstomorrow, our picnic will beru-
ined.

The negation (xx) deniesthe certainty expressed by (x).

1.2.4. Order of quantifiers. It isimportant to redlize that the order
of universal and existential quantifiers cannot be changed without utterly
changing the meaning of the sentence. For example, if you start with the
true statement:

e For every positivereal number x, there existsa positive real number
y such that y? = x
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and reverse the two quantifiers, you get the totally absurd statement:

e There exists a positive real number y such that for every positive
real number X, one has y? = x.

1.2.5. Negation of complex sentences. Hereisasummary of rulesfor
negating statements:

1. The negation of “A or B” is“not(A) and not(B).”

2. The negation of “A and B” is“not(A) or not(B).”

3. The negation of “For every x, P(x)" is “There exists x such that
not(P(x)).”

4. The negation of “There exists an x such that P(x)” is“For every x,
not(P(x)).”

5. Thenegation of “A impliesB” is“A and not(B).”

6. Many statements with implications have implicit universal quanti-
fiers, and one must use the rule (3) for negating such sentences.

The negation of acomplex statement (one contai ning quantifiersor log-
ical connectives) can be “simplified” step by step using the rules above,
until it contains only negations of simple statements. For example, a state-
ment of the form “For al x, if P(x), then Q(x) and R(x)” has a negation
which simplifies as follows:

not(For al x, if P(x), then Q(x) and R(xX)) =
There exists x such that not( if P(x), then Q(x) and R(x)) =
There exists x such that P(x) and not( Q(x) and R(x)) =
There exists x such that P(x) and not(Q(x) ) or not(R(x) ) .
Let's consider a special case of a statement of thisform:
e For all real numbersx, if x < 0, then X3 < 0 and |x| = —x.

Herewe have P(x) : x < 0, Q(X) : X3 < 0and R(x) : |x| = —x. Therefore
the negation of the statement is:

e There exists a real number x such that x < 0, and x3 > 0 or |x| #
—X.

Hereis another example

e If L and M are distinct lines with non-empty intersection, then the
intersection of L and M consists of one point.
This sentence has an implicit universal quantifier and actually means.
e For every pair of lines L and M, if L and M are distinct and have
non-empty intersection, then the intersection of L and M consists
of one point.

Therefore the negation uses both the rule for negation of sentences with
universal quantifiers, and the rule for negation of implications:
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e Thereexistsapair of lines L and M such that L and M are distinct
and have non-empty inter section, and theinter section does not con-
sist of one point.

Finally, this can be rephrased as:

e Thereexistsapair of lines L and M such that L and M are distinct
and have at least two pointsin their intersection.

Exercise 1.2.1. Form the negation of each of the following sentences.
Simplify until the result contains negations only of simple sentences.

(@) Tonight I will go to a restaurant for dinner or to a movie.

(b)  Tonight I will go to a restaurant for dinner and to a movie.

(c) Iftoday is Tuesday, | have missed a deadline.

(d) Foralllines L, L has at least two points.

(e) For every line L and every plane P, if L is not a subset of P,
then LN P has at most one point.

Exercise 1.2.2. Same instructions as for the previous problem Watch
out for implicit universal quantifiers.

(@) If xis a real number, then v/x2 = |X|.

(b) If x is a natural number and x is not a perfect square, then
J/Xis irrational.

(c) If nis a natural number, then there exists a natural number
N such N > n.

(d) If L and M are distinct lines, then either L and M do not
intersect, or their intersection contains exactly one point.

1.2.6. Deductions. Logic concerns not only statements but also de-
ductions. Basically thereis only one rule of deduction:
e IT A, then B. A. Therefore B.
For quantified statements this takes the form:
e For all x, if A(x), then B(X). A(«). Therefore B(«).
Example:
e Every subgroup of an abelian group is normal. Z is an abelian

group, and 37Z is a subgroup. Therefore 3Z is a normal subgroup
of Z.

If you don’t know what this means, it doesn’t matter: You don’'t have to
know what it meansin order to appreciateitsform. Hereisanother example
of exactly the same form:

e Every car will eventually end up as a pile of rust. My brand new
blue-green Miata is a car. Therefore it will eventually end up as a
pile of rust.
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As you begin to read proofs, you should look out for the verbal vari-
ations which this one form of deduction takes, and make note of them for
your own use.

Most statements requiring proof are “if ... then” statements. To prove
“if A, then B,” one has to assume A, and prove B under this assumption.
To prove “For al x, A(x) implies B(x),” one assumesthat A(«) holds for
aparticular (but arbitrary) «, and proves B(«) for this particular o.

1.3. Sets

1.3.1. Setsand set operations. A setisacollection of (mathematical)
objects. The objects contained in a set are called its elements. We write
x € Aif xisan element of the set A. Two setsare equal if they contain ex-
actly the same elements. Very small sets can be specified by simply listing
their elements, for example A = {1, 5, 7}. For sets A and B, we say that A
iscontained in B, and we write A € B if each element of Aisaso an ele-
ment of B. That is, if x e Athen x € B. (Because of the implicit universal
quantifier, the negation of thisisthat there exists an element of Awhichis
not an element of B.)

Two setsareequal if they contain exactly the same elements. Thismight
seem like a quite stupid thing to mention, but in practice one often has two
quite different descriptions of the same set, and one has to do alot of work
to show that the two sets contain the same elements. To do this, it is often
convenient to show that each is contained in the other. That is, A = B if,
andonly if, AC Band BC A.

Subsets of a given set are frequently specified by a property or predi-
cate; for example, {x € R : 1 < x < 4} denotes the set of al real numbers
between 1 and 4. Note that set containment is related to logical implica-
tion in the following fashion: If a property P(x) implies a property Q(X),
then the set corresponding to P(x) is contained in the set corresponding to
Q(x). For example, x < —2 impliesthat X2 > 4, 0 {x e R : x < —2} C
(xeR: x> 4.

The intersection of two sets A and B, written AN B, isthe set of €le-
ments contained in both sets. ANB={x:xe A and xe B}. Notethe
relation between intersection and the logical conjunction. If A= {xe C:
Px)}andB={xeC:QX)},thenANB={xeC:P(x) and Q(X)}.

The union of two sets A and B, written AU B, is the set of elements
contained in at least one of thetwo sets. AUB={x:xe A or xe B}
Set union and the logical disjunction are related as are set intersection and
logical conjunction. If A={xe C: P(x)} and B= {x e C: Q(x)}, then
AUB={xeC:Px) o Q(X)}.
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Givenfinitely many sets, for example, fivesets A, B, C, D, E, onesim-
ilarly defines their intersection AN B N C N D N E to consist of those
elements which arein al of the sets, and theunion AUBU CUDU E
to consist of those elements which arein at least one of the sets.

There isaunique set with no elements at all which is called the empty
set, or the null set and usually denoted @.

Proposition 1.3.1. The empty set is a subset of every set.

Proof. Given an arbitrary set A, we have to show that ¥ C A; that is, for
every element X € ¢, one has x € A. The negation of this statement is that
there exists an element x € ¢ such that x ¢ A. But this negation is false,
because there are no elementsat al in @' So the original statement is true.

]

If the intersection of two sets is the empty set, we say that the sets are
digoint, or non-intersecting.
Hereisasmall theorem concerning the properties of set operations.

Proposition 1.3.2. For all sets A, B, C,

@ AUA=AandANA=A

() AUB=BUA and ANB=BnNA.

(0 (AuB)UC=AUBUC=AUBUC),and (ANB)NC =
ANBNC=AN(BNO).

(d ANnBUC)=(ANB)U(ANC),and AU(BNC)=(AUB)N
(AUC).

The proofs are just a matter of checking definitions.

Given two sets A and B, we define the relative complement of Bin A,
denoted A\ B, to bethe elements of A which are not contained in B. That
is, A\B={xe A:x¢ B}.

In general, all the sets appearing in some particular mathematical dis-
cussion are subsets of some “universal” set U; for example, we might be
discussing only subsets of the real numbers R. (However, there is no uni-
versal set onceand for al, for all mathematical discussions; the assumption
of a“set of all sets’ leadsto contradictions.) Itiscustomary and convenient
to use some special notation such asC (B) for the complement of Brelative
to U, and to refer to C (B) = U \ B simply as the complement of B. (The
notation C (B) is not standard.)

Exercise 1.3.1. The sets An Band A\ B are disjoint and have union
equal to A.
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Exercise 1.3.2 (de Morgan's laws). For any sets A and B, one has:
C(AuB)=C(A NC(B),
and
C(ANB)=C(A)UC(B).
Exercise 1.3.3. For any sets Aand B, A\ B= ANC(B).
Exercise 1.3.4. For any sets A and B,
(AUB)\ (AN B) = (A\ B)U(B\ A).

1.3.2. Functions. We recall the notion of a function from A to B and
some terminology regarding functions which is standard throughout math-
ematics. A function f from Ato B isarule which givesfor each element
of ae Aan“outcome” in f(a) € B. Aiscalled thedomain of the function,
B the co-domain, f(a) iscalled the value of the function at a, and the set
of all values, { f (a) : a € A}, iscaled therange of the function.

In general, the range is only a subset of B; afunction issaid to be sur-
jective, or onto, if itsrangeisal of B; that is, for each b € B, there exists
anac A, suchthat f(a) = b. Figure 1.3.1 exhibits a surjective function.
Note that the statement that a function is surjective has to be expressed by
a statement with a string of quantifiers.

o o
o o
o o
o o
o o
(e]

(e]

Figure 1.3.1. A Surjection

A function f issaid to be injective, or one-to-one, if for each two dis-
tinct elementsa and &' in A, one has f(a) # f(a'). Equivaently, for al
a,a € A if f(a) = f(@)thena=a’. Figure 1.3.2 displays an injective
and anon- injective function.
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Figure 1.3.2. Injective and Non-injective functions

Finally f issaid to be bijectiveif it isboth injective and surjective. A
bijective function (or bijection) is also said to be a one-to-one correspon-
dence between A and B, since it matches up the elements of the two sets
one-to-one. When f is bijective, there is an inverse function f~* defined
by f~1(b) = aif, and only if, f(a) = b. Figure 1.3.3 displays a bijective
function.

1 1

2
3 3
4 4

5

Figure 1.3.3. A Bijection

If f: X — Yisafunctionand Aisasubset of X, wewrite f(A) for
{f(@):ae Al={yeY: thereexistsac Asuchthat y= f(a)}. Werefer
to f(A) astheimageof Aunder f. If Bisasubset of Y, wewrite f~1(B)
for {x e X: f(x) € B}. Werefer to f~1(B) asthe preimage of B under f.



Chapter 2

Elements of Geometry

2.1. First concepts

The geometry which we will study consists of a set S, called space.
The elements of the set are called points. Furthermore S has certain dis-
tinguished subsets called lines and planes. A little later we will introduce
other special types of subsetsof S, for example, circles, triangles, spheres,
etc.

On the one hand, we want to picture these various types of subsets ac-
cording to our usual conceptions of them: Lines, planes, and so forth are
idealizations of objects known from experience of the physical world. For
example, alineis an idealization of a piece of string stretched tightly be-
tween two points. (But it is supposed to extend indefinitely in both direc-
tions, and, of course, we do not have any direct physical experience with
anything of indefinite extent.) Similarly a plane is supposed to be a flat
surface, like a table-top, but also is supposed to extend indefinitely in all
directions. (Sort of like Nebraska, but larger. Again, wedon’t have any di-
rect physical experience with flat surfaces of indefinite extent.) We want to
use our intuition and experience with physical space to suggest the results
which should hold true in our geometry, and to guide our assumptions.

Onthe other hand, it isafundamental goal of alogical treatment of ge-
ometry to make all of our assumptions quite explicit. We want to try to be
very careful not to usein any proof any hidden assumptions about geomet-
ric objects. Only in thisway can we be sure that our arguments are correct,
and that we can trust our results.

We will allow ourselves the use of the real numbers, and all of their
usual properties.

Axiom -1 Giventwodistinct points, thereisexactly onelinecontain-
ing them.

16
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A

Figure2.1.1. AxiomI-1

Remember, alineisaset of points, and containment here means con-

tainment as elements. We denote by {Pﬁ the line containing distinct points
Pand Q

We call any collection of points which lie on oneline colinear and any
collection of points which lie on one plane coplanar

Axiom[-2 Giventhreenon-colinear points, thereisexactly oneplane
containing them.

Figure2.1.2. AxiomI-2

Axiom |-3 If two distinct pointsliein a plane P, then the line con-
taining them isa subset of P.

Figure2.1.3. AxiomI-3

Axiom I-4 If two planesintersect, then their intersection isaline.
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Figure2.1.4. Axiom -4

Theorem 2.1.1. If two distinct lines intersect, then their inter section con-
sists of exactly one point.

Figure 2.1.5. Intersection of Two LInes

Proof. We could rephrase the statement thus: if two lines are distinct, then
their intersection does not contain two distinct points. The contrapositive
is: If two lines L and M contain two distinct points in their intersection,
then L = M. We prove this contrapositive statement.

Suppose L and M arelines (possibly the same, possibly distinct), and P
and Q aretwo different pointsintheir intersection. Since P, Q areelements
of L, it follows from Axiom |-1 that L = {P_(ﬁ Likewise, since P, Q are
elements of M, it follows from Axiom I-1 that M = % But then M =

PO=L O

Theorem 2.1.2. Ifaline L intersectsa plane P and L isnot a subset of P
then the intersection of L and P consists of exactly one point.

Proof. Exercise. O
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Figure 2.1.6. Intersection of aLineand aPlane

Sofar, al the axioms (and two theorems) would be valid for ageometry
with only one point P with { P} begin both aline and an plane! So clearly
the axioms so far do not force us to be talking about the geometry which
we expect to talk about! Very shortly, | will give axiomswhich ensure that
space has lots of points, but in the meanwhile let us at |east assume the fol -
lowing:

Axiom -5 Everylinehasat least two points. Every planehasat least
3 non-colinear points. And S has at least 4 non-coplanar points.

Theorem 2.1.3. If Lisaline, and Pisapoint notin L, thenthereisexactly
oneplane P containing L U { P}.

Proof. Exercise. O

Figure2.1.7. Plane determined by aLine and a Point
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Theorem 2.1.4. If L and M are two distinct lines which intersect, then
thereis exactly one plane containing L U M.

Proof. Exercise. O

Figure 2.1.8. Plane determine by Two Lines

2.2. Distance

A familiar notion in geometry isthat of distance. The distance between
two pointsisthelength of the line segment connecting them. In order to get
things into logical order, we will actually introduce the notion of distance
first, and use it to establish the notion of line segment!

Axiom D-1 For every pair of points A, Bthereisanumber d(A, B),
called the distancefrom Ato B. Distance satisfiesthe following proper-
ties:

1. d(A, B) = d(B, A)

2. d(A, B) > 0,and d(A, B) = 0if, and only if, A= B.

Definition 2.2.1. A coordinate function on aline L is a bijective (one-to-
one and onto) function f from L to the real numbers R which satisfies
| f(A) — f(B)| =d(A, B) foral A, B € L. Given acoordinate function
f, the number f (A) is called the coordinate of the point A € L.

Axiom D-2 Every linehasat least one coordinate function.

It follows immediately that every line contains infinitely many points,
because R is an infinite set, and a coordinate function is a one-to-one cor-
respondence of the line with R. Any coordinate function makes alineinto
a“number line” or “ruler”.
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Lemma2.2.2. If Lisalineand f : L — R isa coordinate function, then
g(A) = — f (A) isalso a coordinate function.

Proof. Exercise. O

Lemma2.23. If Lisalineand f : L — R isa coordinate function, then
for any real number s, h(A) = f(A) + sisalso a coordinate function.

Proof. Exercise. O

Lemma?2.2.4. Let L bealineand A and B distinct points on the line L.
Thenthereisa coordinatefunction f on L satisfying f (A) =0and f(B) >
0. Furthermore, if g is any coordinate function on L then f can be taken
to have the form

f(P)=+4g(P)+s
for some s € R.

Proof. By Axiom D-2, L has a coordinate function g. Let s= g(A), and
define f1(P) = g(P) —s. By Lemma2.3, f; isalsoacoordinatefunction,
and f1(A) =g(A) —s=0. Now | f1(B)| = | f1(B) — fi(A)| =d(A, B) >
0,since A#£ B. If f1(B) > 0, wetake f(P) = f1(P). Otherwise, wetake
f(P) = — f(P), which isalso a coordinate function by Lemma2.2. [

Theorem 2.2.5. Let L bealineand A and B distinct points on theline L.
There is exactly one coordinate function f on L satisfying f(A) = 0 and
f(B) > 0.

Proof. The previous lemma says that there is at least one such function.
We have to show that thereisonly one. Solet f, g betwo coordinate func-
tionson L satisfying f (A) =g(A)=0and f(B) > 0, g(B) > 0. Wehave
to show that f(C) = g(C) for al C € L. Inany case, we have | f (C)| =
| f(C) — f(A)] =d(A B) =19(C) — g(A)| = [9(C)|. Soincase f(C)
and g(C) are both non-negative or both non-positive, they are equal. In
particular, f(B) = g(B) = d(A, B).

If £(C),g(C) satisfy f(C) < f(B) and g(C) < g(B), then g(B) —
g(C) =d(B,C) = f(B) — f(C). Therefore, f(C) — g(C) = f(B) —
g(B) =0, 0r f(C) =g(C).

The only remaining case to consider is that for some C € L, one of
f(C), g(C) isnegativeand oneisgreater than f (B) = g(B). Without loss
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of generality, assume g(C) < 0and g(B) < f(C). Then we have
d(C, B) = g(B) — g(C)
= (g(B) —g(A) + (9(A) — g(C))
=d(A, B) +d(A,C),

since g(C) < g(A) < g(B). Using the coordinate function f instead, we
have

d(A,C) = f(C)— f(A)
= (f(C) - f(B)) + (f(B) — f(A))
=d(B,C) +d(A, B),
since f(A) < f(B) < f(C). Adding the two displayed equations gives

d(C,B)+d(A,C)=d(A, B)+d(A C)+d(B,C)+d(A, B),
and canceling like quantities on the two sides gives
0=2d(A, B).

But thisis false, because A # B. This contradiction shows that the case
under consideration cannot occur. So we always have f(C) = g(C). O

Theorem 2.2.6. Let f, g betwo coordinate functionson aline L. Then
f(P)==x9(P)+s,
for some s € R.

Proof. Let A= f~1(0), so f(A) = 0. Furthermore, let B= f~1(1), s0
f(B) = 1. According to Lemma 2.4, there is a coordinate function h of
the form h(P) = +g(P) + swhich satisfiesh(A) = 0 and h(B) > 0. But
according to Theorem 2.5, h = f, so f hasthe desired form. O

2.3. Betweenness, segments, and rays

Definition 2.3.1. Let X, y, and z be three different real numbers. We say
that yisbetween xand zif x < y < zor z < y < x. We denotethisrelation
byx —y—z

Notethat x — y— zisequivaentto z— y — x.
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Lemma 2.3.2. Let X, y, and z be three different real numbers. Let sbe a
real number. The following are equivalent:

@ x—y—z

b)) X+s)—(Yy+95—(z+59).

© X)—(y) —(-2.

(d (=x+9—(=y+s) — (=z+59).

Proof. This is true because addition of a number to both sides of an in-
equality preservestheinequality, while multiplying both sides of aninequal-
ity by (-1) reverses the order of the inequality. O

Lemma?2.3.3. Let L bealine, andlet f, g betwo coordinate functions on
L. Let A, B, C bedistinct points on L. The following are equivalent:

@ f(A— f(B)— f(C).

(b)  g(A)—g(B) —g(C).

Proof. Note that all the quantities f(P), g(P) for P apointin L are red
numbers. So the two conditions concern betweenness for real numbers.

According to Theorem 2.2.6, thereis an € € {£1} and a real number
s such that for al points P on L, f(P) = €g(P) + s. Then according to
Lemma 2.3.2, the two conditions (a) and (b) are equivalent. O

Definition 2.3.4. Let L bealine, and let A, B, C be distinct pointson L.
We say that B is between A and C if for some coordinate function f on L,
onehas f(A) — f(B) — f(C). Wedenotethisrelationby A— B— C.

A
Figure2.3.1. Bishetween Aand C
Accordingto Lemma2.3.2,if f(A) — f(B) — f(C) for one coordi-

nate function f, then f(A) — f(B) — f(C) for all coordinate functions
f. So the concept of betweenness for points on aline does not depend on
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the choice of a coordinate function. By convention, when we assert that
threepoints A, B, C satisfty A— B — C, weimplicitly assert that thethree
points are distinct and colinear.

The next two theorems are very easy:

Theorem 2.35. A— B—Cif,andonlyif, C— B— A.

Proof. Exercise. O

Theorem 2.3.6. Given three distinct points on a line, exactly one of them
is between the other two.

Proof. Exercise. O
Definition 2.3.7. Let Aand B betwo distinct points. Theline segment AB

isthe subset of theline AB cons sting of A, B, and the set of points C which
are between A and B.

AB={C: A— C— B}U{A, B}

Figure 2.3.2. A Segment

Theorem 2.3.8. Let A, B bedistinct pointsand let f be a coordinate sys-
temon AB such that f(A) < f(B). Then

AB={Ce AB: f(A) < f(C) < f(B)).

Proof. Exercise. O

Theorem 2.3.9. A line segment determines its endpoints. That is, if seg-
ments AB and A’B’ are equal, then {A, B} = {A/, B'}.
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Proof. Exercise. O

Definition 2.3.10. Thelength of alinesegment ABisd(A, B). Thelength
is sometimes denoted by ¢ (AB). Two segments are said to be congruent if
they have the same length. One denotes congruence of segmentsby AB =
CD.

Notethat the definition of thelength of asegment makes sense because
of Theorem 2.3.9.

Theorem 2.3.11. A line segment has a unique midpoint. That is, given
a segment AB there is a unique point C € AB satisfying d(A,C) =
D(C, B) = (1/2)d(A, B).

Proof. Exercise. O

Definition 2.3.12. Let Aand B betwo distinct points. TherayA_é isisthe
subset of the line AB consi sting of A, B, and the set of points C such that
A—C—Bo A—B—C.

A

Figure2.3.3. A Ray
Theorem 2.3.13. Let A and B betwo distinct points. Theray AB consists
of those points C € AB such that C does not satisfy C— A— B.

Proof. Exercise. O

Theorem 2.3.14. Let A and B be two distinct points. Let f be a coordi-
nate function on AB such that f(A)=0and f(B) > 0. Then theray AB
consists of those points C AB such that f(C)>0.
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Proof. Exercise. O

Theorem 2.3.15. A ray determines its endpoint. That is, if rays AB and
A'B areequal, then A= A,

Proof. Exercise. O

Corollary 2.3.16. Let A and B be two distinct points, and letr > 0 be a

positive real number. Then thereis exactly one point C on theray AB such
that d(A,C) =r.

Proof. Let f beacoordinatefunctionon AB suchthat f(A)=0and f(B) >
0. For al points D e KE, one has f (D) > 0, by the Theorem, and there-
fored(A,D)=|f(D)— f(A)|= f(D). Letr > 0. Since f isone-to-one,
there can be at most one point C € AB such that d(A,C) = f(C) =r.
Since f isonto, thereisapoint C on AB such that f(C) =r,and again by
the Theorem, C € AB. O

Theorem 2.3.17. Aray is determined by its endpoint and any other point
ontheray. Thatis, if C € ABandC # A, then AC = AB.

Proof. Exercise. O

Definition 2.3.18. An angle is the union of two rays with the same end-
point, not contained in one line. The two rays are called the sides of the
angle. The common endpoint is called the vertex of the angle. The angle
ABU AC isdenoted / BAC (or equally well /CAB.)

Figure2.3.4. AnAngle
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Remark 2.3.19. The union of two distinct rays with a common endpoint,
which do lie on oneline, isthe line. (Proof?) So we will sometimes call a
line with a distinguished point on the line a straight angle.

Definition 2.3.20. Let A, B, C be non-colinear points. The triangle
A ABC isthe union of the segments AB, BC, and AC. The three segments
are called the sides of the triangle.

Theangles / ABC, /BCA, /CAB arecalled theanglesof thetriangle.
One often denotesthese anglesby /A, /B, and /C, respectively. One says
that /C and side AB are opposite, and similarly for the other angles and
sides.

B

Figure 2.3.5. A Triangle

Theorem 2.3.21. Atriangle determinesits vertices. That is, if AABC =
ADEF, then {A, B,C} ={D, E, F}.

Proof. The proof of thisis surprisingly tricky, and requires several steps.
We will skip it, but the ambitious reader may wish to proveit. O

The next result is dlightly technical. It gives a characterization of be-
tweenness (and therefore of line segments).

Theorem 2.3.22. Let A, B, C be distinct points on a line. The following
are equivalent:

@ A—B—C.

(b) d(A,C)=d(A, B)+d(B,C).

Proof. Itispossibletochooseacoordinatefunction f on L suchthat f(A) <
f(B), by Theorem 2.2.5.



28 2. ELEMENTS OF GEOMETRY

Suppose A— B—C. Then f(A) < f(B) < f(C),s0
d(A, C) = f(C)— f(A)
= (f(C) — f(B)) + (f(B) — f(A))
=d(B,C) +d(A, B).
Thus we have (a) implies (b).
Suppose now that (b) holds. According to Theorem 2.3.6, exactly one
of the conditionsis satisfied:

1. B—A—C.
2. A—C—B.
3. A—B—C.

Our strategy isto eliminate thefirst two possibilities, leaving only the third.
Suppose we have B— A— C. It follows that

(2.3.) d(B,C) =d(B, A) + d(A, C),

by the (already proved) implication (@) implies (b).
Now adding this equation and the equation in condition (b), and then
canceling like terms on the two sides gives

(2.3.2) 0=2d(B, A),

so that A = B by Axiom D-1. This contradicts our original assumptions,
so it cannot betruethat B— A — C.

Thesecond possibility iseliminatedin exactly the sameway. Thisleaves
only the third possibility, and proves the implication (b) implies (a). [

This theorem gives us a not so obvious characterization of line seg-
ments:

Corollary 2.3.23. Let Aand C bedistinct points, and let B beathird point
on AC, possibly equal to one of A, C. The following are equivalent:

(@ Bisontheline segment AC.
() d(A,C)=d(A,B)+d(B,C).

Theorem 2.3.24. (Segment addition and subtraction) Suppose A, B, C
are colinear with A—B—C and A’,B,C' are colinear with
A —B —C.

(8 If AB= A'B'and BC= B'C/,then AC= AC.

(b) I1fAB= A'B and AC= AC/, then BCZ BC.

Proof. Thisisimmediate from the definition of congruence and the impli-
cation (a) implies (b) in Theorem 2.3.22. O
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/C
C:
B
A /
AI

Figure 2.3.6. Segment Addition Theorem

Exercise 2.3.1. Given two distinct points A and B on a line L, prove
that there is a point M on L such that A— M — B and that there is
a point E on L such that A— B— E.

E
MB
A

Figure 2.3.7. Exercise2.3.1

Given4distinct points A, B, C, D onaline, wewrite A— B—C —D
if al therelationshold: A—B—C, A—B—D, A—C—D,and
B—C—D.

Exercise 2.3.2. Prove that any four points on a line can be named in
exactly one order A, B, C, D suchthat A— B— C—D.

D
BC
A

Figure 2.3.8. Exercise2.3.2
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Proof. Exercise, using a coordinate function. O

2.4. Separation of a plane by a line

According to our usual conception of lines and planes, aline L con-
tainedinaplaneP dividesthe planeinto two “halves,” one one each “ side”
of the line. Given two points on one side of theline, it is possible to trace
a curve from one point to the other which does not cross the line L. But
given two points on opposite sides of the ling, any curve from one to the
other will crosstheline. These statements do not follow from our previous
axioms, so we need to assert them as a new axiom.

First we need a definition:

Definition 2.4.1. A set Sisconvexif, for eachtwo distinct points A, Be S,
the line segment AB is asubset of S.

Figure2.4.1. Convex sets

Figure 2.4.2. Non-convex sets

Exercise2.4.1.
(a) Every line is convex.
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(b)  Every line segment is convex.
(c) Every ray is convex.
(d) Every plane is convex.

Axiom PS  (Plane separation axiom) Let L bealineand P a plane
containing L. Then P \ L (the set of pointson P which arenot on L) is
the union of two sets H; and H, with the properties:

1. H; and H; are non-empty and convex.
2. Whenever Pﬂd Q are points such that P € H; and Q € Hy,
thesegment PQ intersects L.

H1

H2

Figure 2.4.3. Plane Separation Axiom

One calls H; and Hy the two half-planes determined by L. One says
that two points both contained in one of the half-planesare on the same side
of L, and that two points contained in different half-planes are on opposite
sidesof L. Onecalls L the boundary of each of the half-planes. The union
of either of the half-planes with L is called a closed half-plane.

Exercise 2.4.2. Prove: Let L be a line in a plane P, and let A, BE
points of P which are not on L. Then L intersects the segment AB
if, and only if, A and B are on opposite sides of L.

Exercise 2.4.3. Prove: Let L be a line in a plane P, and let A, B,C
be points of P which are not on L. If A and B are on opposite sides
of L, and C and B are on opposite sides of L, then A and C are one
the same side of L.
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Theorem 2.4.2. (Pasch's Axiom) Let AABC be a triangle in a plane P.

Let L # AB bealinein P which intersects the segment AB at a point be-
tween A and B. Then L intersects one of the other two sides of thetriangle.

Figure 2.4.4. Pasch’'s Axiom

Proof. Since L intersects the segment AB at a point between A and B, A
and B lie on opposite sides of L, by the previous exercise. Suppose that L
does not intersect AC; then A and C are on the same side of L, again, by
the previous exercise. It followsthat C and B are on opposite sides of L,
and therefore L intersects CB by the Plane Separation Axiom. O

Remark 2.4.3. Thisis called Pasch’s axiom because it was introduced by
Pasch as an axiom, in place of the Plane Separation Axiom. For us, itisa
theorem.

Theorem 2.4.4. Let AABC beatriangleinaplaneP. Let L bealinein
P which does not contain any of the vertices A, B, C of thetriangle. Then
L does not intersect all three sides of the triangle.

Proof. Refer to the figure for Pasch’s axiom. Suppose L intersects two of
the sides of thetriangle, say AB and BC. It has to be show that L does not
intersect AC. Because L intersects AB, it followsthat A and B are on op-
positesidesof L. Similarly, C and B are on opposite sidesof L. Therefore,
Aand C areon the same side of L, so L does not intersect AC. O

Theorem 2.4.5. Let P beaplane, andlet L bealineinP. Let M # L be
another linein P which intersects L. Then M intersects both half-planes
of P determined by L.
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Proof. Let A bethe unique point of intersection of L and M (using Theo-
rem1.1). Let f beacoordinatefunctionon M and let B and C be pointson
M suchthat f(B) < f(A) < f(C). Thenwehave B— A— C. Suppose
B and C are on the same side of L, and let H denote the half-plane which
contains both of them. Since H is convex, the segment BC isasubset of H.
Since A € BC, it followsthat A< H. But AisalsoinL,so A HNL =4.
This contradiction shows that B and C are on opposite sides of L, and thus
M intersects both half-planes determined by L. O

Lemma 2.4.6. The set of points on a ray, other than the endpoint, is con-
VEX.

Proof. Let AB be aray, and let Sdenote AB \ {A}. It must be shown that
Sisconvex. Write M for AB. Let f be acoordinate function on M such

that f(A) = 0and f(B) > O (Theorem 2.2.5). Then theray AB is the set
of points C on M such that f(C) > 0 (Theorem 2.3.14) and Sisthe set of
points C on M such that f(C) > 0. Let C and D be two distinct points
in S, and suppose without loss of generality that 0 < f(C) < f(D). If
C— X— D, then f(C) < f(X) < f(D). Butthen f(X) > 0,0 X €
S. O

Theorem 2.4.7. Let P be a plane, let L bealinein P. Let H be one of
the half-planes of P determined by L. Let A be a point on L and let B be

apointin H. Then every point of the AB other than A is an element of H.
That is, AB\ {A} € H. Moreover, ABN H = AB\ {A}.

Figure 2.4.5. Theorem 2.4.7

Proof. Let Sdenoteﬁ\ {A}. It must be shown that S= ABNH.

Write M for ﬁ; since B ¢ L, weknow M # L, and therefore Aisthe
unique point on M N L. It followsthat SN L = @.
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Let H’ denote the half-plane oppositeto H. Suppose (in order to reach
acontradiction) that SN H’ contains apoint C. According to the previous
lemma, Sisconvex; sinceboth Band C arein S, onehas BC C S, so BCN
L € SN L = @. On the other hand, by the Plane Separation Axiom, BC N
L £ @. This contradiction showsthat SN H' = @. It followsthat SC H,
SOSCHN AB.

Tofinishtheproof, it must beshownthat H N AB C S, or, equivaently,
AB\SCP\H.Solet Xe AB\ S If X=A thenXe L P\ H. If
X # AB, then one has X — A — B. But then L intersects XB at A, so X
and B are on opposite sides of L. Hence X ¢ H. O

Definition 2.4.8. Consider an angle Z/ABC inaplaneP. The point B lies
in one half-plane H of P determined by AC. Similarly, the point C liesin
one half-plane K of P determined by AB. Theintersection H N K of these
two half-planesis called the interior of the angle. We will call the union
of the angle and itsinterior the closed wedge determined by the angle. See
Figure 2.4.6.

A
Figure2.4.6. Angleinterior

Definition 2.4.9. Theinterior of thetriangle isthe intersection of theinte-
riors of the three angles of the triangle. See Figure 2.4.7

Theorem 2.4.10. Consider anangle /BAC, and let D beapoint inthein-
terior of theangle. Then every point of the ray ﬁ, except for the endpoint
A, liesin theinterior of theangle. That is, AD \ {A} liesin theinterior of
the angle. Moreover, the intersection of theline AD and theinterior of the
angleis AD \ {A}.

Proof. This follows from two applications of Theorem 2.4.7. See Figure
2.4.8. O
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B

Figure2.4.7. Triangleinterior

A

Figure2.4.8. Theorem 2.4.10

Theorem 2.4.11. Consider atriangle A ABC. All the pointsof the segment
BC, except for the endpoints, liein the interior of the angle /BAC.

B

Figure2.4.9. Theorem 2.4.11

Proof. SeeFigure2.4.9. Let D beapoint between Band C. Then D and C

areon the same side of line AB because that line intersects CD at B, which
is not between C and D. Similarly, D and B are on the same side of line

AC. But this meansthat D isin the interior of angle /CAB. O
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Theorem 2.4.12. (Crossbar Theorem) Let A ABC beatriangle, and let D
be a point in the interior of the angle ZA. Then the ray AD intersects the

side BC of the triangle opposite to / A.

Figure 2.4.10. Crossbar Theorem

Proof. Refer to Figure 2.4.10 for the theorem statement and Figure 2.4.11
for the proof. Thisis pretty tricky, and the reader is invited to skip it for

now, unless possessed by particular zeal.

Figure 2.4.11. Crossbar Proof

Designatethelines ﬁ:, ﬁ, AB by £, m, and nrespectively. Let E be
apoint onlinensuchthat E— A— B (Exercise 2.3.1). Let F be apoint
on the segment EC such that E— F — C (Exercise 2.3.1).

We make several observations:

1. E and B are on opposite sides of ¢ because ¢ intersects EB at A.
2. E and F are on the same side of ¢ because ¢ intersects EF at C,

which is not between E and F.
3. D and B are on the same side of ¢ because D isin the interior of

the angle /CAB.
4. Therefore F and D are on opposite sides of £.
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5. D and C are on the same side of n since D isin the interior of the

angle /CAB.

6. C and F are on the same side of n because n intersects FC at E,

which is not between F and C.

7. Therefore F and D are on the same side of n.

Since F and D lie on opposite sides of ¢, the segment FD intersects ¢
at some point A". Since F and D lie on the same side of n, the point A’ is
not onn, andin particular A’ £ A. If F wereon line m, then FD would be
equal to m. But this cannot be so, because £D intersects ¢ at A’ whilem
intersects ¢ at A.

Thus we conclude that m does not intersect EC at any point F between
E and C. Thus E and C areonthe samesideof m. But E and B are on oppo-
site sides of m because mintersects EB at A and E— A — B. Therefore
C and B are on opposite sides of m, and m must intersect CB at some point
X between C and B.

It remains only to show that X isontheray AD < m. But accordi ngto
Theorem 2.4.11, X isin the interior of the angle / BAC, and according to
Theorem 2.4.10, the intersection of the interior of the angle and the linem
iscontained in the ray AD. Therefore X ison the ray AD. O

Theorem 2.4.13. Let AABC beatriangle, and let Y be a point in thein-

terior of angle ZA. Let T be the point of intersection of AY and side BC
(using the Crosshar Theorem). Let Z be a point on the segment AT with
A— Z—T. Then Zisintheinterior of the triangle A ABC. See Figure
2.4.12.

B

Figure2.4.12. Theorem 2.4.13
Proof. Exercise. ]

Exercise 2.4.4. Prove: The intersection of two convex sets is convex.
The intersection of several convex sets is convex.
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Exercise 2.4.5. Prove: The interior of an angle is convex.

Exercise 2.4.6. Prove: The interior of a triangle is convex.

In the following, L isalinein aplane P, and H; and H, are the two
half-planes of P determined by L.

Exercise2.4.7. Prove: The closed half-plane H, U L is convex.
Exercise 2.4.8. Prove: H; contains at least 3 non-colinear points.
Exercise 2.4.9. Prove: P is the unique plane containing H;.

Exercise 2.4.10. Suppose that segments AB and CD intersect at a
point X such that A— X — B, and C— X — D. Show that Bis in
the interior of angle /CAD, C is in the interior of angle /ADB, Ais
in the interior of the angle /DBC, and D is in the interior of angle
/BCA.

D

Figure 2.4.13. Exercise2.4.10

2.5. Angular Measure

You are no doubt familiar with measuring angles using a protractor.
The common unit of angle measureisthe degree; astraight angleisdivided
into 180 degrees, aright angle into 90 degrees. Protractor measurement is
codified in the following additional axioms for geometry:

Axiom AM-1 Thereisafunction m from the set of all angles to the set
of real numbersin the openinterval (0, 180).
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Definition 2.5.1. Thevalueof thefunction mon an angleiscalled the mea-
sure of theangle. Two anglesare congruent if they have the same measure.
Congruence of anglesis denoted by

/ABC = /EFG

A

Figure 2.5.1. Angle construction

Axiom AM-2  (Angle Construction). Fix aray AB, and one half plane H
determined by theline AB. For each number r e (0, 180), there is exactly
oneray AP with endpoint A and with P € H, such that m/ PAB =r.

Using the notion of congruence, this axiom translates to the following
statement: Let /XYZ be an angle. Fix aray A_é, and one half plane H

determined by theline AB. Then thereisexactly oneray AP with endpoint
Aandwith P € H, such that / XYZ = / PAB.

m/DAB = 18.56°
m/CAD = 32.68°
m/CAB = 51.23°

Figure 2.5.2. Angle addition
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Axiom AM-3 (Angle Addition). Supposethat D isapoint in the interior
of angle /BAC. Then

m/BAC = m/BAD + m/DAC.

Using the notion of congruence, oneimmediately obtainsthefollowing
statement:

Theorem 2.5.2. Let D beapoint intheinterior of Z/ABC, andlet D’ bea
point in theinterior of ZA'B'C'.
@& If /ABD = /ABD’ and /CBD = /C'B'D/, then /ABC =

/A'BC.

() If /ABD = /AB'D’ and /ABC = /A'B'C/, then /CBD =
/C'B'D'.

Proof. Exercise. O

Definition 2.5.3. Twoangles/DAC and /DAB formalinear pair in case:

1 Raysﬂé and AB are oppositerayson aline;i.e. C, A, B are col-
inear,and C— A— B; and
2. Disnot on theline AB.

Figure2.5.3. Linear pair

Axiom AM-4 (Linear Pair Axiom). If angles /DAC and /DAB form a
linear pair, then the sum of their measuresis 180,

m/DAC + m/BAD = 180.

Definition 2.5.4. Two angles are called supplementary if the sum of their
measures is 180. Two angles are called complementary if the sum of their
measures is 90.
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Thusthe Linear Pair Axiom saysthat two anglesforming a linear pair
are supplementary.

Definition 2.5.5. Anangleis called aright angle if its measure is 90. An
angleiscalled acuteif its measure islessthan 90, and is called obtuseiif its
measure is more than 90.

Theorem 2.5.6. Anangle /BAD isaright angleif, and only if, thereisa

point C online AB such that angles /BAD and /DAC are congruent and
formalinear pair.

Proof. Exercise. O

B

Figure 2.5.4. Right angles

Definition 2.5.7. Thetworaysof aright angleare said to be perpendicular.
Two lineswhich intersect forming aright angle (and thus four right angles)
are said to be perpendicular.

Line segments are said to be perpendicular if the lines containing them
are perpendicular; the segments themselves are not required to intersect;
they must only lie on perpendicular intersecting lines. The same term is
used for aline segment and aline, aray and aline segment, etc. which lie
on perpendicular lines. The symbol _L is used to denote perpendicularity.

Thus AB L BC meansthat the line and the segment are perpendicular.

Theorem 2.5.8. Let L bealine, let Abeapointon L, andlet P beaplane
containing L Then there exists one and only one line M in P intersecting
L at Asuchthat M L L.
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Proof. Exercise. O

Theorem 2.5.9. Let AB be a line segment, let P be the midpoint of AB,
and let P be a plane containing AB Then there exists one and only one
lineM in P intersecting AB at P suchthat M L AB.

Proof. Exercise. O

Figure 2.5.5. Perpendicular bisector

Definition 2.5.10. Theline M inP intersecting the segment AB at itsmid-
point and perpendicular to AB is called the perpendicular bisector of AB
inP.

When two distinct linesintersect, they form four angles. Namely, sup-
pose that two lines intersect at A, that B, C are points one one of the lines
with B— A— C, and that B'C’ are points on the other line such that
B'— A— C’. Then one has four angles, /BAC’, /C'AC, /CAB’, and
/B AB.

Definition 2.5.11. Two angles formed by a pair of intersecting straight
linesis called avertical pair if they do not share acommon ray.

Note that when two lines intersect, there are two vertical pairs among
thefour angleswhich they form. Inthe notation used above, thepair / BAC,
/B'AC isavertica pair, and the pair /BAB’, /CAC’ isavertical pair.

Theorem 2.5.12. Two angles forming a vertical pair are congruent.
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Figure 2.5.6. Vertica pair

Proof. Suppose that two distinct lines intersect at A, that B, C are points
oneoneof thelineswith B— A — C, andthat B'C’ are pointson the other
linesuchthat B — A — C’. Wehaveto showthat /BAC' = /B’ AC. Note
that the pair of angles /BAC’, /BAB' isalinear pair, so the anglesare sup-
plementary by Axiom AM-4. Likewisethepair /BAB’, /B’ ACisalinear
pair, so the angles are supplementary by Axiom AM-4. Thus we have

m/BAC’ + m/BAB’ = 180, and

m/B'AC + m/BAB’ = 180,
so m/BAC’ = m/B’ AC, aswas to be shown. O

Theorem 2.5.13. |If one of the anglesformed by a pair of distinct intersect-
ing linesisaright angle, then all four angles are right angles.

Proof. Exercise. O

Exercise 25.1. Let /BAC be an angle in a plane P and let D be a
point in P on the same side of AC as B. If m/DAC < m/ BAC, then
D is in the interior of the angle /BAC.

2.6. Congruence of Triangles

| have previously introduced the notions of congruence of line segments
and of angles: Two linesegmentsare congruent if they havethe samelength
(distance between endpoints) and two angles are congruent if they have the
same angular measure. | will now define a notion of congruence for trian-
gles: in brief, two triangles are congruent if they can be “matched up” so
that al the “corresponding parts’ are congruent. This concept requires a
detailed explanation:
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Consider twotrianglesA ABC and ADEF. A correspondence between
the two triangles is a bijection (one-to-one and onto function) between the
two sets of vertices { A, B, C} and {D, E, F}. For example, one correspon-
denceis

A<~— E
B«— D

C<«— F.
We abbreviate this correspondence by

ABC «—— EDF.

Figure 2.6.1. Congruent triangles

There are six possible correspondences between two triangles. (Exer-
cise) A correspondence between two triangles induces bijections between
the sets of sides of the two triangles and between the sets of angles of the
twotriangles. For example, the correspondence aboveinducesthebijection

/A<~— /E
/B<«— /D
/C«— /F

between the sets of angles, and the bijection

AB <« E
BC «— DF
AC «—— EF

between the sets of sides of the two triangles.
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Definition 2.6.1. A correspondence
ABC «— EDF.

between twotriangles A ABC and A EDF iscalled acongruenceif al pairs
of corresponding angles are congruent and all pairs of corresponding sides
are congruent, that is

(A= /E, /B=/D, /[/CZ=/F,
and
ABZED, BCX=DF, ACZXEF.

If the correspondence ABC «— EDF is a congruence, we write
AABC = AEDF.

InFigure2.6.1, AABC = AEDF.

When we write AABC = AEDF, we mean that the particular corre-
spondence ABC «<— EDF isacongruence. Thisis adifferent assertion
from AABC = ADEF, which says that a different correspondence be-
tween the sametrianglesis a congruence. However, when we say in words
that two triangles A ABC and AEDF are congruent, we mean only that at
least one of the six possible correspondences between the two triangleisa
congruence.

Exercise 2.6.1. (Transitivity of Congruence) Prove: If AABC= ADEF
and ADEF = AGHJ, then AABC = AGHJ.

The basi ¢ axiom concerning congruence of trianglesisthe Side-Angle-
Side axiom:

Axiom SAS Consider a correspondence between two triangles. |f
two pair sof corresponding sidesarecongruent, and if theanglesformed
by these sides ar e congr uent, then the correspondenceisa congruence.

c E
=
B
A
D

Figure 2.6.2. Side Angle Side Axiom
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L et usexpressthiswith symbols: Consider acorrespondence ABC <—>
DEF between triangles. Suppose that AB = DE, AC = DF, and /A=
/D. Then AABC = ADEF.

In Figure 2.6.2 the corresponding markings on pairs of sidesand angles
indicates congruence of these parts of the triangles. Such markings are a
convenient device for keeping track of congruent parts.

Definition 2.6.2. A triangleiscalledisoscelesif it hastwo congruent sides.
Itiscalled equilateral if it hasall three sides congruent. It iscalled equian-
gular if it has all three angles congruent.

Theorem 2.6.3 (Isosceles Triangle Theorem). If two sides of a triangle
are congruent, then the angles opposite to these two sides are congruent.

Let us restate the Theorem in symbols: Suppose in atriangle A ABC
that AB= AC. Then /B= /C.

Proof. We consider a correspondence between A ABC and itself, namely
ABC «— ACB. Under thiscorrespondence, AB <« AC, AC «— AB,
and / A <— / A. These corresponding parts are congruent, by hypothesis.
Hence, by the SASaxiom, onehas A ABC = A ACB. Sinceall correspond-
ing parts of congruent triangles are congruent, we conclude /B = /C. [

Corollary 2.6.4. An equilateral triangleis equiangular.

Proof. Exercise. O

Theorem 2.6.5 (Angle-Side-Angle Theorem). Consider a correspon-
dence between two triangles. Suppose that two angles and the side
connecting these two angles in one triangle are congruent to the cor-
responding parts of the other triangle. Then the correspondence is a
congruence.

We restate the Theorem in symbols. Consider a correspondence
ABC <— DEF between triangles. Suppose that /A= /D, /B = /E,
and AB = DE. Then AABC = ADEF. Refer to Figure 2.6.3

Proof. RefertoFigure2.6.4. Accordingto Corollary 2.3.16, thereisaunique
point G on theray DF such that DG = AC.
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c E
F
B
A
D

Figure2.6.3. Angle-Side-Angle Theorem

¢ E
F
B
A
D

Figure 2.6.4. Proof of Angle-Side-Angle Theorem

Then we have
AC=DG, /A=/D, andAD=DE,
so the SAS axiom AABC = ADEG. But then
/DEG=/B= /DEF,

wherethefirst congruencefollowsfrom the congruenceof trianglesA ABC =
A DEG and the second by hypothesis. Points F and G are on the same side

of line DE. (Why?) Hence by the uniqueness assertion in Axiom AM-2,
the rays EF and EG coincide. Since F and G are both points of intersec-

tion of thisray with the line ﬁ, we have F = G by Theorem 2.1.1. But
then AABC = ADEF, aswasto be shown. O
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Theorem 2.6.6. If two angles in a triangle are congruent, then the sides
opposite them are congruent.

Proof. Exercise. O

Corollary 2.6.7. If atriangleis equiangular, it is equilateral.

Proof. Exercise. ]
Combining Corollaries 2.6.4 and 2.6.7, we have:
Theorem 2.6.8. Atriangleisequilateral, if, and only if, it is equiangular.

Thefinal congruence criterion for trianglesisthe Side-Side-Side crite-
rion.

Theorem 2.6.9 (Side-Side-Side Theorem). Consider a correspondence
between two triangles. Suppose that all three pairs of corresponding sides
are congruent. Then the correspondence is a congruence.

We restate the theorem in symbols: Consider an correspondence of tri-
angles ABC «— DEF. Suppose AB = DE, AC = DF, and BC = EF.
Then AABC = ADEF. Refer to Figure 2.6.5

¢ E
F
B
A
D

Figure 2.6.5. Side-Side-Side Theorem

Proof. Thisisfairly complicated, so the reader may wish to skip it on the
first reading. Thefirst step in the proof isto construct a (congruent) copy of
ADEF sharing one side with A ABC. By Axiom AM-2, thereis a unique
ray AX suchthat X and C areon oppositesidesof ABand /XABZ /FED.
By Corollary 2.3.16, thereisaunique point C’ on AX such that AC’ = DF.
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Now, by the SASaxiomwehave ADFE = A AC’'B. Refer to Figure 2.6.6.
It will now sufficeto provethat AACB = A AC’B, since the transitivity of
congruences will give the desired result.

Since C and C’ are on opposite sides of AB, the segment joining them
meets AB at a point M. There are three possibilities to consider:

1. A—M—B.

2. M isone of the endpoints of AB.

3. M isnot on the segment AB.

C

c

Figure 2.6.6. Proof Case 1

We start with case (1). SeeFigure2.6.6. By thelsosceles Triangle The-
orem 2.6.3 appliedto AACC'monehas / ACC’' = / AC'C, and by the same
theorem appliedto ABCC’, onehas /BCC’' = /BC'C. SinceA— M — B,
it followsthat M isintheinterior of angles / ACB and / AC’ B, by Theorem
2.4.11. Therefore, two applications of the Angle Addition Axiom AM-3
givem/ACB = m/ACM + m/MCB = m/ACC’ + m/C’CB, and like-
wisem/AC'B=m/AC'M + m/MC'B = m/AC'C + m/CC’'B. Taking
into account the angle congruences obtained above from the Isosceles Tri-
angle Theorem, one then has m/ AC'B = m/ACB. But then AAC'B =
A ACB, by the SAS axiom.

Case (2) iseasier. One can assume without loss of generality that M =
A. RefertoFigure2.6.7. Applyingthelsosceles Triangle Theoremto ABCC’
gives /BCC' = /BC'C. Now an application of the SAS axiom gives
AACB = AAC'B.

For case (3), refer to Figure 2.6.8. We can assume without loss of gen-
erality that M — A — B. Use of the I sosceles Triangle Theorem twice, as
in case (1) givesthe congruences /ACC' = /AC'Cand /BCC’ = /BC'C.
This time, however, we have A interior to angles /BCX = /BCC’ and
/BC’'X = /BC’C. (Why?) The Angle Addition Axiom gives, therefore,
m/BCA = m/BCC’ — m/ACC’, and m/BC’'A = m/BC'C — m/AC'C.
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Figure 2.6.7. Proof Case 2

C'

Figure 2.6.8. Proof Case 3

Using the congruences obtained from the Isoscel es Triangle Theorem then
gives m/BCA = m/BC’A. Now, as before, the SAS axiom implies that
AAC'B= AACB. O

Exercise 2.6.2. This is more a project than a simple exercise. Here
is the outline for an alternative proof of the SSS Theorem. If we
knew that /A= /D, then the desired congruence would follow from
the SAS axiom.

In order to reach a contradiction, suppose that m/ A% m/D. We
can suppose without loss of generality that m/A > m/D. (Other-
wise, just exchange the roles of the two triangles.)

As a first step, construct a triangle AABY such that AABY =
ADEF, and Y is on the same side of AB as C. Show that Y is in
the interior of the angle /CAB

There are three cases to consider

(&) YisonCB.
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(b) Y and A are on opposite sides of CB.
(c) Y and A are on the same side of CB.
The first case is easily disposed of. If Y is on CB, then Y = C, as

both are on ray BC and both have the same distance to point B. (Use
2.3.16.) Butthen /CAB = /YAB = /XAB = /FDE, in contradiction
to our assumption.

Show that the other two cases also lead to contradictions. See
Figure 2.6.9 for case (3), where the segment CY is drawn in. Use
the Isosceles Triangle theorem to get congruence of certain angles,
and eventually derive a contradiction. Handle case (2) similarly.

Y

A

Figure 2.6.9. Alternative Proof: Case (b)

A

Figure 2.6.10. Alternative Proof: Case ()

Exercise 2.6.3. Show that there are six correspondences between
two triangles A ABC and ADEF.

Exercise 2.6.4. Suppose that a triangle A ABC is isosceles, but not
equilateral. How many different congruences are there between the
triangle and itself?
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Exercise 2.6.5. Suppose that a triangle AABC is equilateral. How
many different congruences are there between the triangle and it-
self?

Exercise2.6.6. In Figure 2.6.11, suppose that point X is the mid-
point of segments AB and CD. Which triangles in the figure are
congruent? Prove your assertion.

A C

Figure 2.6.11. Exercise2.6.6

Exercise 2.6.7. In Figure 2.6.12, suppose that point X is the midpoint
of segment AB, and that CD L AB. Which triangles in the figure are
congruent? Prove your assertion.

C

Figure2.6.12. A Kite

Exercise 2.6.8. Refer again to Figure 2.6.12. Suppose now that point
X is the midpoint of segment AB, and that /CAX = /CBX. Which
triangles in the figure are congruent? Prove your assertion.

Exercise2.6.9. Refer again to Figure 2.6.12. Suppose now that /ACX =
/BCX and AC = BC. Which triangles in the figure are congruent?
Prove your assertion.
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2.7. Some geometric constructions

Inthissection, wewill discuss some geometric constructions (construc-
tionswith straightedge and compass). | am putting these constructions here
in the text because they make nice illustrations of the use of congruent tri-
angles. The constructions depend, however, on two “self-evident” facts,
which we will be able to prove only later.

First we recall the definition of acircle:

Definition 2.7.1. Let P be aplane, A € P apoint, and r > 0 a positive
number. The circle with center A and radiusr in the plane P isthe set of
all points X € P satisfying d(A, X) =r.

FACT A: Let L bealineand A apoint not contained ontheline L let P be
the plane containing L and A. If r > 0 is sufficiently large, then the circle
of radiusr about AinP intersects L in exactly two points.

Figure2.7.1. Circleand Line

FACT B: Let Aand B betwo pointsinthe planeP withd(A, B) =c. Let
r > Oandlet Shethecirclein P centered at Awithradiusr. Let Rbeany
positive number between |c —r| and c+r, and let T bethecirclein P of
radius R centered at B. The Sand T have exactly two point of intersection,
and furthermore, the two points of intersection are on opposite sides of the

line AB.

The proofs of these two facts will depend on the Pythagorean theorem,
and will be giveninin Section xxxx. So logically, this section belongs af-
ter Section xxxx. The material in this section may not be used, except
within this section, until the proofs of FACTS A and B are obtained.

Since the two FACTS depend on the Pythagorean theorem, it won’t do
any harm to allow the use of thistheorem in this section as well.



54 2. ELEMENTS OF GEOMETRY

Figure 2.7.2. Two Circles

Theorem 2.7.2 (Pythagorean theorem). Let AABC be a right triangle,
with right angle at A. Let X, y, z denote the lengths of the sides AB, AC,
and BC. Then 22 = X + y2.

Construction 2.7.3 (Midpoint of aline segment). Consider a line seg-
ment ABinaplaneP. Wewill construct the midpoint of the line segment.

Let c denote d(A, B). Draw the circles Sand T in P of radius c cen-
tered at Aand B respectively. Let X and Y be the two points of intersection
of the two circles (which exist according to FACT B). Snce X and Y areon
opposite sides of AB, the segment XY intersects lineAB at a point M. It
isasserted that M is the midpoint of AB.

Y

Figure 2.7.3. Midpoint Construction
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Proof. RefertoFigure2.7.3. First of al, onecan show, using the Pythagorean
theorem that M is between A and B. (One hasto consider two cases: M is
one of the endpointsof AB, and M isnot contained in the segment AB, and
show that each of these casesisimpossible. Thisis|eft as an exercise.)

By construction all of the segments AX, AY, AB, BX, BY are con-
gruent, with length c. By the Isosceles Triangle Theorem 2.6.3 applied to

triangles A AXB and A AY B we have the following congruences of angles:
(2.7.1) /XABZ=/XBA, /YABZ /YBA,

Because the diagonals of the quadrilateral AYBX cross, each vertex of the
quadrilateral isintheinterior of the oppositeangle (Exercise ??). Therefore
the Angle Addition Axiom AM-3 tells us that

m/XAB+ m/YAB = m/XAY,

(2.7.2) m/XBA+ m/ZYBA = m/XBY.

Combining this with Equation 2.7.1 gives
(2.7.3) /XAY = / XBY.

Now the SASaxiomimpliesthat A XAY = A XBY, andtherefore /AXM =
/BXM. Since AX = BX and MX = MX, another use of the SAS axiom
tells us that AXAM = AXBM. Consequently, AM = MB, as was to be
shown. O

Thisfinishesthe proof of the construction. Note that we also may con-
clude that /AMX = /BM X. But these two angles form alinear pair, so
it follows that they are right angles. Thus we have also constructed a per-
pendicular line segment meeting AB at the midpoint.

Construction 2.7.4 (Perpendicular to aline, at apoint on theline). Let L
bealineand P a point ontheline, and let P be a plane containing L. e
will construct a line segment in P perpendicular to L and meeting L at P.

Draw acirclein P of arbitrary positive radiusr; this circle will meet
L at two points A and B such that A— P — B. Now, of course, P isthe
midpoint of the segment AB.

Do the midpoint construction (Construction 2.7.3) on segment AB, ob-
taining a segment XY meeting AB at P.

Then XY L L.

Proof. Let f be acoordinate function on L satisfying f(P) = 0. Take A
to be the point with f(A) = r and B the point with f(B) = —r. Then
A— P—B,andd(P, A) =d(P, B) =r, so Aand B areon thecircle.
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Now theremarksfollowing the proof of the midpoint construction show
that the segment XY obtained by the midpoint constructionis perpendicular
tothelineL at P. O

Construction 2.7.5 (Perpendicular ssgment from apoint to aline). Refer
to Figure 2.7.4. Let L be a line and P a point not on the line. We will
construct a perpendicular line segment from P to a point on L.

Let P denote the plane containing L and P. Draw a sufficiently large
circleinthe plane P centered at P, obtaining two points of intersection A
and B of thecirclewith theline L. (FACT A))

Now construct the midpoint M of the segment AB on L.

It is asserted that PM is perpendicular to L.

Proof. Exercise. O

Figure 2.7.4. Perpendicular Construction

Exercise 2.7.1. Prove that PM is perpendicular to L.

Construction 2.7.6 (Bisector of an angle). Refer to Figure 2.7.5. Let
/BAC be an anglein a plane P. Draw a circle of arbitrary positive ra-
diusr inthe plane P centered at A. Thecircle intersectsrays ABand AC
at points X and Y respectively.

Now construct the midpoint M of the segment XY and draw the ray
AM. Itis asserted that AM bisects the angle /BAC.
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In more detail, the assertion isthat the ray AM liesintheinterior of the
angle /BAC, and /BAM = /CAM.

Proof. Exercise. O

Figure2.7.5. Angle Bisector

Exercise 2.7.2. Prove that AM bisects the angle /BAC, and that it is
the only ray bisecting the angle.

2.8. Bisectors and Perpendiculars

Weare NOT going to usethe material from the previous sectioninthis
section, because that material depended on as yet unproved statements.

Recall that we already havethefollowing theorems (whose proofswere
left as exercises.)

Theorem 2.8.1. Every line segment has a unique midpoint.
Theorem 2.8.2. Let L bealine, let Abeapointon L, andlet P beaplane

containing L Then there exists one and only one line M in P intersecting
Lat Asuchthat M L L.
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Theorem 2.8.3. Let AB be a line segment, let P be the midpoint of AB,
and let P be a plane containing AB. Then there exists one and only one
line M in P intersecting AB at P suchthat M | AB.

Figure 2.8.1. Perpendicular bisector

Now that we have atheory of congruent triangles, we can characterize
the perpendicul ar bisector of aline segment as follows:

Theorem 2.8.4 (Perpendicular Bisector Theorem). Let AB be a line seg-
ment, let P be the midpoint of AB, and let P be a plane containing AB.
Let M denote the perpendicular bisector of AB in P. The following are
equivalent for a point X € P:

(& Xison the perpendicular bisector M.
(b) Xisequidistant from A and B; that is, d(X, A) = d(X, B).
See Figure 2.8.2.

Proof. Let X beapoint on the perpendicular bisector M. Consider the tri-
angles AAPX and ABPX. Onehas AP = BP, since P isthe midpoint of
AB, /APX = /BPX, since both are right angles, and PX = PX. There-
fore, by the SAS congruence axiom, AAPX = ABPX, and in particular
AX = BX. So X isequidistant from A and B.

Conversely, let X be a point in the plane P which is equidistant from
A and B. Again consider thetriangles AAPX and ABPX. Onehas AP =
BP, since P isthe midpoint of AB, AX = BX, by hypothesis, and PX =
PX. Therefore, by the SSS congruence theorem, AAPX = ABPX, andin
particular /APX = /BPX. Sincethesetwo anglesform alinear pair, both
are right angles. But that means that X lies on the perpendicular bisector
of AB. O
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Figure 2.8.2. Perpendicular Bisector Theorem

Continuing with this theme of bisectors and perpendiculars, we now
show:

Theorem 2.8.5. Every angle has a unique bisector. That is, given an an-
gle /BAC in a plane P, there is a unique ray AD in P such that AD is
contained in the interior of angle /BAC and /DAB = /DAC.

Figure 2.8.3. Angle bisector

Proof. The proof followsthe line of the construction given in the previous
section (but, of course, we do not use the construction of the midpoint of a
segment given there.) Refer to Figure 2.7.5.

Letr beany positive number, and let X and Y be pointson AC and AB
respectively, such that d(A, X) = d(A,Y) =r (Corollary 2.3.16). Con-
sider thesegment XY (whichliesinP by Axiom|-3. Let M bethe midpoint
of this segment. | claim that AM is a bisector of angle /BAC.
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First, M isin theinterior of /BAC by Theorem 2.4.11, and AM isin
theinterior of /BAC by Theorem 2.4.10.

By the SSS Congruence Theorem, AAMX = AAMY. (Why are all
the corresponding sides congruent?) It follows that / XAM = /YAM, as
was to be shown.

Uniquenessfollows from the uniqueness statement in Axiom AM-2, or
from the following exercise. O

Theorem 2.8.6 (Angle Bisector Theorem). Let /BAC be an angle in a
plane P. and let M be a point in the interior of the angle. Let X and Y
be points on the rays AB and AC respectively such that AX = AY. Prove
that the following are equivalent:

(& M ison the bisector of the angle / BAC.
(b) M isequidistant from X and Y. See Figure 2.8.4.

Figure 2.8.4. Angle Bisector Theorem

Proof. Exercise. O

Exercise2.8.1. Refer to Figure 2.7.5. In that figure, assume that
AX = AY, that ray AM lies in the interior of /YAX, that M is the in-

tersection of AM with segment XY, and that /XAM = /YAM. Prove
that M is the midpoint of XY.

Using the theory of congruent triangles, we can aso now prove the ex-
istence of a perpendicular line from a given point to a given line not con-
taining the point:
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Theorem 2.8.7 (Existence of Perpendiculars). Let L belineandlet P bea
point not on the line L. Then thereis a line containing P a perpendicular
to L.

P

Figure 2.8.5. Existence of Perpendiculars

Remark 2.8.8. Onewould certainly expect that the perpendicular isunique,
and thisis so, but we have to wait alittle to prove this fact.

Proof. See Figure 2.8.5. Choose any two points A and B on the line L,
and consider the triangle A PAB. First we construct another point P” on
the opposite side of L from P such that APAB = AP’AB. (Compare the
proof of the SSS congruence theorem.) Thisis done asfollows:

By Axiom AM-2, there is a unique ray AX such that X and P are on
opposite sides of L and /XAB = /PAB. By Corollary 2.3.16, thereisa
unique point P’ on AX such that AP’ = AP. Now, by the SAS axiom we
have APAB = AP’ AB.

The segment PP’ intersectsline L at some point M since P and P’ are
on opposite sides of the line.

If M happens (by extraordinary luck) to coincide with A, then we al-
ready have APMB = AP'MB, and in particular /PMB = /P’"MB. But
these two angles form alinear pair, and therefore are right angles. Hence

"is perpendicular to L.

If M isnot equal to A, we consider thetriangles APAM and AP’ AM,
and show that they are congruent. Wehave PA= P’ Aand /PAB= /P'AB
by the congruence A PAB = AP’ AB. Sincealso AM iscongruent to itself,
the SAS congruence axiom gives APAM = AP’AM. But then in partic-
ular, /AMP = /AMP’. Asthese two angles form alinear pair, both are

right angles. Hence PP is perpendicular to L. O
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2.9. Exterior Angles, Transversals, and Par-

allels

Consider atriangle A ABC and extend the side BA beyond vertex A,
as shown in Figure 2.9.1. The angle /CAX is called an exterior angle of
triangle A ABC at vertex A.

Figure 2.9.1. Exterior Angle

A second exterior angle at A is formed by extending the side CA be-
yond A. Thetwo exterior anglesat Aform avertical pair, so they have the
same angular measure. Furthermore, either exterior angle forms a linear
pair with angle /A, so /A and an exterior angle at A are supplementary.

The following inequality is crucial to the theory of parallel lines:

Theorem 2.9.1. Let AABC beatriangle, and let « be the measure of the
exterior angle at vertex A. Then @ > m(/B) and @ > m(/C).

Proof. The proof isdlightly tricky, so we will skip it for now. O

Corollary 2.9.2. Two angles of a triangle cannot be supplementary. In
particular, a triangle cannot have two right angles.

Proof. Suppose triangle A ABC has supplementary angles at vertices A
and B, m(ZA) + m(/B) = 180. Since angle /A is also supplementary to
an exterior angle at vertex A, it follows that the measure of this exterior
angleisequa to m(/B). But this contradicts the previous theorem. O

Corollary 2.9.3. (Uniguenessof perpendiculars) Let L bealine, andlet P
be a point not on the line. Then thereis exactly one line M which contains
P and which is perpendicular to L.
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Proof. Existence of such line was shown in Theorem 2.8.7. Now suppose
there were two such lines, intersecting L at points Q and R. Then triangle
A PQRhastworight angles, at vertices Q and R, contradicting the previous
corollary. O

Now consider two (distinct) linesL and L’ inaplaneP. Let T bea
third linein P which intersects L at Aand L" at A’. Line T issaid to be a
transversal to lines L and L'.

Figure2.9.2. Transversal

T forms four angleswith L at A, and four angleswith L” at A’. Refer
to Figure 2.9.2, where we have labeled the four anglesat Aas /1, /2, /3,
/4, and the four angles at A’ as /1, /2, /3, /4. One says that the pairs
(41, /1)), (£2,2)), etc. are corresponding angles.

One says that the pairs (/2/, /4) and (/3/, /1) are pairs of alternate
interior angles.

Exercise 2.9.1. Give a definition of corresponding angles which does
not depend on pointing at a diagram.

Exercise 2.9.2. Give a definition of alternating interior angles which
does not depend on pointing at a diagram.

Exercise2.9.3. Let L and L’ be two (distinct) lines in plane and let
T be a transversal to L and L’. Prove: If one pair of corresponding
angles is congruent, then all four pairs of corresponding angles are
congruent.
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Exercise2.9.4. Let L and L’ be two (distinct) lines in plane and let T
be a transversal to L and L’. Prove: If one pair of alternate interior
angles is congruent, then both pairs of alternate interior angles are
congruent.

Exercise2.9.5. Let L and L’ be two (distinct) lines in plane and let
T be a transversal to L and L’. Prove: A pair of alternate interior
angles is congruent if, and only if, a pair of corresponding angles is
congruent.

Definition 2.9.4. Two distinct lines are paralée if they are coplanar and
have empty intersection. Any lineis paralléel to itself.

Theorem 2.9.5. Let L and L’ be two (distinct) linesin plane and let T be
atransversal to L and L. Supposethat a pair of alternate interior angles
iscongruent (or equivalently, a pair of corresponding anglesis congruent.
Thenthelines L and L’ are parallel.

Proof. Itfollowsfromthe exercisesthat all four pairs of corresponding an-
glesare congruent, and both pairs of alternateinterior anglesare congruent.
Let A and A’ denote the points of intersection of T with L and L’ respec-
tively.

Suppose that L and L’ are not parallel, and let P be the unique point
of intersectionof Land L'. Let Rbeapointon L suchthat P— A— R.
Then angles /RAA’ and /PAA’ are a pair of alternate interior angles, so
are, by hypothesis, congruent. But angles / RAA’ and / PAA’ form alinear
pair, so they are supplementary. It follows that angles / PAA" and /PA' A
are supplementary. But these aretwo anglesof thetriangle A PAA', sothey
cannot be supplementary by Corollary 2.9.2. This contradiction shows that
thetwo lines L and L’ are parall€l. O

Corollary 2.9.6. Let L bealineand P apoint not ontheline L. Thenthere
is (at least one) linein the plane P determined by L and P which contains
the point P and is parallel to L.

Proof. Let T betheuniquelinecontaining P whichintersects L and is per-
pendicular to L. Let L’ be the unique line in P which contains P and is
perpendicular to T. Then T istransversal to L and L', and is perpendicu-
lar to both L and L'. It follows that all pairs of corresponding angles are
congruent, sothelines L and L’ are parallel. O
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Figure 2.9.3. Proof of Parallelism

We now come to the final axiom of plane geometry:

Axiom PAR. Let L bealineand P a point not on theline L. Then
thereis exactly onelinein the plane P determined by L and P which
containsthe point P and isparallel to L.

Theorem 2.9.7. Let L and L’ beparalléel linesinaplaneP, andlet T bea
transversal to L and L’. Then corresponding anglesfor thetriple (L, L, T)
are congruent.

Proof. Either al pairs of corresponding angles are congruent or none are.
Suppose that no pair of corresponding angles is congruent.

Let B and B’ be pointson L and L’ respectively, which lie on the same
sideof T. Let Q beapoint on T such that A— A’ — Q. Then angles
/QAB and /QA'B’ are corresponding angles, so not congruent. By the
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axiom of angle measure, Axiom AM-2, thereisapoint B” on the sameside
of T as Band B’ such that /QA'B” = /QAB. Furthermore B” does not
lieonline L', because then B” would lie on ray A'B and /QA'B’ would
equal /QA’'B”, so congruent to / QAB, contrary to our assumption. So let
L” denotetheline A'B”.

Then T isatransversal to L and L”, and corresponding angles for the
triple (L, L”, T) arecongruent, so L and L” are parallel by Theorem 2.9.5.

But then L" and L” are two distinct lines, both containing point A’ and
both parallel to L, contradicting Axiom PAR. This contradiction showsthat
corresponding angles for thetriple (L, L', T) are congruent. O

Corollary 2.9.8. Let L and L’ bedistinct linesinaplaneP,andlet T bea
transversal to L and L. Then L isparallel to L’ if, and only if, correspond-
ing angles for thetriple (L, L', T) are congruent.

Corollary 2.9.9. Thesumof themeasuresof theanglesof atriangleis 180.

c

Figure2.9.4. Sum of AnglesinaTriangle

Proof. Consider atriangle AABC inaplaneP. Let L’ bethe unique line
in P which contains A and which isparallel to L = BC.

Let B’ beapoint on L” which ison the same side of AC asB. Thenan-
gles /B'AB and /C are dlternate interior anglesfor thetriple (L, L', ﬁ)
(two parallel lines and atransversal). Hence /B'AB = /C.

Let C’' beapoint on L’ which is on the same side of ABasC. Arguing
as above, onefindsthat /C'AC = /B.
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Using axioms of angle measure, one findsthat m(/B’AB) + m(ZA) +
m(/C’ AC) = 180. Therefore by the congruences observed in the last two
paragraphs, m(/B) + m(/A) + m(/C) = 180. O

Exercise 2.9.6. Consider a triangle AABC. The measure of the ex-
terior angle at vertex A is equal to the sum of the measures of the
angles ate B and C.

Consider four distinct points A, B, C, D inaplaneP . Suppose that no
three of the points are colinear, and that the segments AB, BC, CD, DA
intersect only at endpoints of the segments. Then the union of the four seg-
ments is called a quadrilateral. The segments are called the sides of the
quadrilateral. Two sides are called adjacent if they intersect (at acommon
endpoint); two sides which are not adjacent are called opposite.

B
Figure2.9.5. Quadrilateral

The angles of the quadrilateral are /A= /DAB, /B= /ABC, /C =
/BCD,and /D = /CDA.

The points A, B, C, D are called the vertices of the quadrilateral. Two
verticesare said to be adjacent if the segment which they determineisaside
of the quadrilateral; otherwise the vertices are said to be opposite. Two an-
gles of the quadrilateral are said to be adjacent if their vertices are adjacent
vertices; otherwise, they are said to be opposite. Thetwo segmentsjoining
opposite vertices are called the diagonal s of the quadrilateral.

A quadrilateral is called a parallelogramif opposite sides are parall€l.
Itiscalled arectangleif al four anglesareright angles. Itiscalled arhon+
busif itisaparallelogramwith all four sidescongruent. Itiscalled asquare
if it isarectangle with all four sides congruent.

Exercise 2.9.7. Prove: A diagonal of a parallelogram divides the par-
allelogram into two congruent triangles.
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Exercise 2.9.8. Prove: Opposite sides of a parallelogram are con-
gruent. Opposite angles of a parallelogram are congruent. Adjacent
angles of a parallelogram are supplementary.

Exercise 2.9.9. Prove: The two diagonals of a parallelogram bisect
each other.

Exercise 2.9.10. Prove: Rectangles exist.

Exercise2.9.11. Prove: Rectangles are parallelograms. Therefore,
opposite sides of a rectangle are congruent, and diagonals of a
rectangle bisect each other.

Exercise 2.9.12. Prove: The diagonals of a rhombus are perpendic-
ular bisectors of one another. This is in particular true of squares.



