Antiderivatives of trigonometric functions

- 1. Powers of $\sin(x)$ or $\cos(x)$
- 1.1. **Odd powers of** $\cos(x)$. Antiderivatives of an odd power of $\cos(x)$ are handled by first splitting off one factor of $\cos(x)$, for example:

$$\int \cos^5(x)dx = \int \cos^4(x)\cos(x)dx.$$

The remaining even power of $\cos(x)$ is expressed in terms of $\sin(x)$ using the identity

$$\sin^2(x) + \cos^2(x) = 1,$$

for example

$$\int \cos^4(x)\cos(x)dx = \int (\cos^2(x))^2\cos(x)dx$$
$$= \int (1 - \sin^2(x))^2\cos(x)dx$$

One now makes the substitution $u = \sin(x)$, $du = \cos(x)dx$, to get

$$\int (1 - \sin^2(x))^2 \cos(x) dx = \int (1 - u^2)^2 du$$
$$= \int (1 - 2u^2 + u^4) du.$$

This is now straightforward to compute,

$$\int (1 - 2u^2 + u^4) du = u - (2/3)u^3 + (1/5)u^5 + c$$
$$= \sin(x) - (2/3)\sin^3(x) + (1/5)\sin^5(x) + c.$$

1.2. **Odd powers of** $\sin(x)$. Odd powers of $\sin(x)$ are handled similarly for example:

$$\int \sin^5(x)dx = \int \sin^4(x)\sin(x)dx.$$

After splitting off one factor of sin(x), express the remaining even power of sin(x) in terms of cos(x) by using the identity

$$\sin^2(x) + \cos^2(x) = 1.$$

In our example,

$$\int \sin^4(x) \sin(x) dx = \int (\sin^2(x))^2 \sin(x) dx = \int (1 - \cos^2(x))^2 \sin(x) dx$$
One now makes the substitution $u = \cos(x)$, $du = -\sin(x) dx$, to get
$$\int (1 - \cos^2(x))^2 \sin(x) dx = -\int (1 - u^2)^2 du = -\int (1 - 2u^2 + u^4) du.$$

1.3. Even powers of $\sin(x)$ or $\cos(x)$. Even powers of $\sin(x)$ or $\cos(x)$ must be handled in a different way. One uses the identities

$$\cos^2(x) = \frac{1 + \cos(2x)}{2}$$
 and $\sin^2(x) = \frac{1 - \cos(2x)}{2}$.

Thus

$$\int \cos^4(x) dx = \int (\cos^2(x))^2 dx = \int \left(\frac{1 + \cos(2x)}{2}\right)^2 dx.$$

Expanding this gives

$$\int (1/4)(1+2\cos(2x)+\cos^2(2x))dx$$
$$= (1/4)\int 1 dx + (1/2)\int \cos(2x) dx + (1/4)\int \cos^2(2x) dx.$$

Note that this antidifferntiation involves various powers of $\cos(2x)$. The first two antiderivatives in the last line are elementary:

$$(1/4) \int 1 \, dx = (1/4)x + c,$$

$$(1/2) \int \cos(2x) \ dx = (1/4)\sin(2x) + c.$$

The antiderivative

$$(1/4) \int \cos^2(2x) dx$$

has to be handled by repeating the procedure,

$$(1/4) \int \cos^2(2x) \ dx = (1/4) \int \frac{1 + \cos(4x)}{2} \ dx$$
$$= (1/8) \int 1 \ dx + (1/8) \int \cos(4x) \ dx$$
$$= (1/8)x + (1/32)\sin(4x) + c.$$

Adding up all the pieces, one gets

$$\int \cos^4(x)dx = (1/4)x + (1/4)\sin(2x) + (1/8)x + (1/32)\sin(4x) + c$$
$$= (3/8)x + (1/4)\sin(2x) + (1/32)\sin(4x) + c$$

2. Products of powers of $\sin(x)$ and $\cos(x)$

Products of powers of $\sin(x)$ and $\cos(x)$ can be handled by the same techniques. If either $\sin(x)$ or $\cos(x)$ appears with an odd exponent, the technique for odd powers can be used. If both appear with even exponents, the technique for even powers is used.

Example 2.1.

$$\int \sin^3(x) \cos^2(x) \, dx = \int \sin^2(x) \cos^2(x) \sin(x) \, dx$$
$$= \int (1 - \cos^2(x)) \cos^2(x) \sin(x) \, dx$$

Now make the substitution $u = \cos(x)$, $du = -\sin(x)dx$

$$\int (1 - \cos^2(x)) \cos^2(x) \sin(x) dx = -\int (1 - u^2) u^2 du$$

$$= \int u^4 - u^2 du = \frac{u^5}{5} - \frac{u^3}{3} + c$$

$$= \frac{\cos(x)^5}{5} - \frac{\cos(x)^3}{3} + c$$

Example 2.2.

$$\int \sin^2(x) \cos^2(x) \ dx = \int (1/4)(1 - \cos(2x))(1 + \cos(2x)) \ dx$$
$$= (1/4) \int (1 - \cos^2(2x)) \ dx$$

Now repeat the trick

$$(1/4) \int (1 - \cos^2(2x)) \ dx = (1/4) \int 1 - (1/2)(1 + \cos(4x)) \ dx$$
$$= (1/4) \int (1/2) - (1/2) \cos(4x) \ dx$$
$$= (1/4) [(1/2)x - (1/8) \sin(4x)] + c$$
$$= (1/8) - (1/32) \sin(4x) + c.$$