Differentiation practice I

■ 1 Compute the derivative.

```
f[x_{-}] = x^{15} + 4 x^{13} + 5 x^{7} + 3 x + 4;
\partial_{x} f[x]
```

■ 2 Compute the derivative.

$$f[x_{]} = \frac{3}{x^3 + 2x + 5};$$
 $\partial_x f[x]$

■ 3 Compute the derivative.

$$f[x_{_}] = \frac{x^2 - 4}{x^2 + 4};$$

$$\partial_x f[x]$$
Together[%]

■ 4 Compute the derivative.

$$f[x_{]} = \frac{x^2 + 3x + 5}{x^2 + 4};$$
Together $[\partial_x f[x]]$

■ 5 Simplify first, then compute the derivative.

$$f[x_{-}] = \frac{x^{3} - \frac{1}{x^{2}+1}}{x^{4} + \frac{1}{x^{2}+1}};$$

$$g[x_{-}] := Simplify[f[x]]$$

$$g[x]$$

$$Together [\partial_{x} g[x]]$$

• 6 Simplify first, then compute the derivative.

$$f[x] = \frac{1}{1 - \frac{2x}{x^2 + 1}};$$

$$g[x] := Simplify[f[x]];$$

$$g[x]$$

$$Together[\partial_x g[x]]$$

■ 7 Compute the derivative.

$$f[x_{-}] := x^{1/7} + 3 x^{13} + \frac{1}{x^{1/7}};$$
 $\partial_x f[x]$

■ 8 Compute the derivative.

$$f[x_{-}] := \frac{x^{1/7} + 3 x^{13}}{x^{1/4} + 2 x^{4}}$$

$$\partial_{x} f[x]$$
Together [%]

■ 9 Compute the derivative.

$$f[x_{-}] = \sqrt{x^2 + 1};$$

$$\partial_x f[x]$$

■ 10 Compute the derivative.

$$f[x_{-}] = \frac{1}{\sqrt{x^2 + 1}};$$

$$\partial_x f[x]$$

■ 11 Compute the derivative.

$$f[x_{-}] := \sqrt{\sqrt{x^2 + 1} + 1};$$

$$\partial_x f[x]$$

■ 12 Compute the derivative

$$f[x_{]} = Sin[x] (x^{15} + 4x^{13});$$
 $\partial_x f[x]$

■ 13 Compute the derivative.

$$f[x_] = Sin[x]^2 (x^{15} + 4 x^{13});$$
 $\partial_x f[x]$

■ 14 Compute the derivative.

$$f[x_{-}] = \frac{Tan[x]}{x^3 + 2x + 5};$$

$$\partial_x f[x]$$

■ 15 Compute the derivative.

```
f[x_] = Sin[x] Cos[x];
\partial_x f[x]
```

■ 16 Compute the derivative.

```
f[x_{-}] := Sin[x] e^{x};
\partial_{x} f[x]
```

■ 17 Compute the derivative.

$$f[x_{-}] = \frac{e^{x}}{\sin[x]};$$

$$\partial_{x} f[x]$$

$$Simplify[\partial_{x} f[x]]$$

■ 18 Compute the derivative.

```
f[x_{_}] = \frac{\sin[x]}{x^2 + 4};
\partial_x f[x]
Simplify [\partial_x f[x]]
```

■ 19 Compute the derivative.

$$f[x_{-}] = \frac{x^{2} + 3x + 5}{\cos[x]};$$

$$\partial_{x} f[x]$$

■ 20 Compute the derivative.

■ 21 Compute the derivative.

$$f[x_{]} = Tan\left[\frac{1}{\sqrt{x^2 + 1}}\right];$$
 $\partial_x f[x]$

■ 22 Compute the derivative.

$$f[x_] = Log[Sin[x]^2 + 5];$$
 $\partial_x f[x]$

■ 23 Compute the derivative.

$$f[x_{-}] = e^{\sin[x]^{2} + 5};$$

$$\partial_{x} f[x]$$

■ 24 Compute the derivative. Log[10,x] means log base 10 of x.

```
f[x_] = Log[10, x];
\partial_x f[x]
```

■ 25 Compute the derivative.

$$f[x_{]} = 10^{\sqrt{x^2+1}};$$

$$\partial_x f[x]$$

■ 26 Compute the derivative.

$$f[x_{-}] = \sqrt{10^{x} + 1};$$

$$\partial_{x} f[x]$$

■ 27 Compute the derivative.

$$f[x_{]} = (e^{-x} + e^{x})^{5};$$

$$\partial_{x} f[x]$$

■ 28 Compute the derivative.

$$f[x_{-}] = \sqrt{\sqrt{\sin[x]} + 1};$$

$$\partial_x f[x]$$

■ 29 Compute the derivative.

$$f[x_{-}] = \frac{x^2 + 3x + 5}{\cos[x]};$$

$$\partial_x f[x]$$

■ 30 Compute the derivative.

$$f[x_{_}] = \frac{(x+1)^{11}}{(x-1)^{11}};$$
Simplify[Together[$\partial_x f[x]$]]