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Chapter 1

Logic and Sets

1.1. Logical connectives
1.1.1. Unambiguous statements. Logic is concerned first of all with

the logical structure of statements, and with the construction of complex
statements from simple parts. A statement is a declarative sentence, which
is supposed to be either true or false.

A statement must be made completely unambiguous in order to be judged
as true or false. Often this requires that the writer of a sentence has es-
tablished an adequate context which allows the reader to identify all those
things referred to in the sentence. For example, if you read in a narrative:
“He is John’s brother,” you will not be able to understand this simple as-
sertion unless the author has already identified John, and also allowed you
to know who “he” is supposed to be. Likewise, if someone gives you direc-
tions, starting “Turn left at the corner,” you will be quite confused unless
the speaker also tells you what corner and from what direction you are sup-
posed to approach this corner.

The same thing happens in mathematical writing. If you run across the
sentence x2 ≥ 0, you won’t know what to make of it, unless the author
has established what x is supposed to be. If the author has written, “Let x
be any real number. Then x2 ≥ 0,” then you can understand the statement,
and see that it is true.

A sentence containing variables, which is capable of becoming an an
unambiguous statement when the variables have been adequately identi-
fied, is called a predicate or, perhaps less pretentiously, a statement-with-
variables. Such a sentence is neither true nor false (nor comprehensible)
until the variables have been identified.

It is the job of every writer of mathematics (you, for example!) to strive
to abolish ambiguity. The first rule of mathematical writing is this: any
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symbol you use, and any object of any sort to which you refer, must be ad-
equately identified. Otherwise, what you write will be meaningless or in-
comprehensible.

Our first task will be to examine how simple statements can be combined
or modified by means of logical connectives to form new statements; the
validity of such a composite statement depends only on the validity of its
simple components.

The basic logical connectives are and, or, not, and if...then. We con-
sider these in turn.

1.1.2. The conjunction and. For statements A and B, the statement
“A and B” is true exactly when both A and B are true. This is convention-
ally illustrated by a truth table:

A B A and B
t t t
t f f
f t f
f f f

The table contains one row for each of the four possible combinations
of truth values of A and B; the last entry of each row is the truth value of
“A and B” corresponding to the given truth values of A and B.

For example:

• “Julius Caesar was the first Roman emperor, and Wilhelm II was
the last German emperor” is true, because both parts are true.
• “Julius Caesar was the first Roman emperor, and Peter the Great

was the last German emperor” is false because the second part is
false.
• “Julius Caesar was the first Roman emperor, and the Seventeenth

of May is Norwegian independence day.” is true, because both parts
are true, but it is a fairly ridiculous statement.
• “2 < 3, and π is the area of a circle of radius 1” is true because

both parts are true.

1.1.3. The disjunction or. For statements A and B, the statement “A
or B” is true when at least one of the component statements is true. Here is
the truth table:
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A B A or B
t t t
t f t
f t t
f f f

In everyday speech, “or” sometimes is taken to mean “one or the other,
but not both,” but in mathematics the universal convention is that “or” means
“one or the other or both.”

For example:

• “Julius Caesar was the first Roman emperor, or Wilhelm II was the
last German emperor” is true, because both parts are true.
• “Julius Caesar was the first Roman emperor, or Peter the Great was

the last German emperor” is true because the first part is true.
• “Julius Caesar was the first Chinese emperor, or Peter the Great

was the last German emperor.” is false, because both parts are false.
• “2 < 3, or π is the area of a circle of radius 2” is true because the

first part is true.

1.1.4. The negation not. The negation “not(A)” of a statement A is
true when A is false and false when A is true.

A not(A)
t f
f t

Of course, given an actual statement A, we do not generally negate it
by writing “not(A).” Instead, we employ one of various means afforded by
our natural language.

Examples:

• The negation of “ 2 < 3” is “ 2 ≥ 3”.
• The negation of “Julius Caesar was the first Roman emperor.” is

“Julius Caesar was not the first Roman emperor.”
• The negation of “I am willing to compromise on this issue.” is I am

unwilling to compromise on this issue.”

1.1.5. Negation combined with conjunction and disjunction. At this
point we might try to combine the negation “not” with the conjunction “and”
or the disjunction “or.” We compute the truth table of “not(A and B),” as
follows:
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A B A and B not(A and B)
t t t f
t f f t
f t f t
f f f t

Next, we observe that “not(A) or not(B)” has the same truth table as
“not(A and B).”

A B not(A) not(B) not(A) or not(B)
t t f f f
t f f t t
f t t f t
f f t t t

We say that two statement formulas such as “not(A and B)” and “not(A)
or not(B)” are logically equivalent if they have the same truth table; when
we substitute actual statements for A and B in the logically equivalent state-
ment formulas, we end up with two composite statements with exactly the
same truth value; that is one is true if, and only if, the other is true.

What we have verified with truth tables also makes perfect intuitive
sense: “A and B” is false precisely if not both A and B are true, that is when
one or the other, or both, of A and B is false.

Exercise 1.1.1. Check similarly that “not(A or B)” is logically equiv-
alent to “not(A) and not(B),” by writing out truth tables. Also verify
that “not(not(A))” is equivalent to “A,” by using truth tables.

The logical equivalence of “not(A or B)” and ‘not(A) and not(B)” also
makes intuitive sense. “A or B” is true when at least one of A and B is true.
“A or B” is false when neither A nor B is true, that is when both are false.

Examples:

• The negation of “Julius Caesar was the first Roman emperor, and
Wilhelm II was the last German emperor” is “Julius Caesar was
not the first Roman emperor, or Wilhelm II was not the last German
emperor.” This is false.
• The negation of “Julius Caesar was the first Roman emperor, and

Peter the Great was the last German emperor” is “Julius Caesar
was not the first Roman emperor, or Peter the Great was not the last
German emperor.” This is true.
• The negation of “Julius Caesar was the first Chinese emperor, or

Peter the Great was the last German emperor” “Julius Caesar was
not the first Chinese emperor, and Peter the Great was not the last
German emperor.” This is true.
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• The negation of “2 < 3, or π is the area of a circle of radius 2” is
“2 ≥ 3, and π is not the area of a circle of radius 2.” This is false,
because the first part is false.

1.1.6. The implication if...then. Next, we consider the implication “if
A, then B” or “A implies B.” We define “if A, then B” to mean “not(A and
not(B)),” or, equivalently, “not(A) or B”; this is fair enough, since we want
“if A, then B” to mean that one cannot have A without also having B. The
negation of “A implies B” is thus “A and not(B)”.

Exercise 1.1.2. Write out the truth table for “A implies B” and for its
negation.

Definition 1.1.1. The contrapositive of the implication “A implies B” is
“not(B) implies not(A).” The converse of the implication “A implies B” is
“B implies A”.

The converse of a true implication may be either true or false. For ex-
ample:

• The implication “If−3 > 2, then 9 > 4” is true. The converse im-
plication “If 9 > 4, then (−3) > 2” is false.

However, the contrapositive of a true implication is always true, and the
contrapositive of a false implication is always false, as is verified in Exer-
cise 1.1.3.

Exercise 1.1.3. “A implies B” is equivalent to its contrapositive “not(B)
implies not(A).” Write out the truth tables to verify this.

Exercise 1.1.4. Sometimes students jump to the conclusion that “A
implies B” is equivalent to one or another of the following: “A and
B,” “B implies A,”, or “not(A) implies not(B).” Check that in fact “A
implies B” is not equivalent to any of these by writing out the truth
tables and noticing the differences.

Exercise 1.1.5. Verify that “A implies (B implies C)” is logically equiv-
alent to “(A and B) implies C,” by use of truth tables.

Exercise 1.1.6. Verify that “A or B” is equivalent to ‘if ‘not(A), then
B,” by writing out truth tables. (Often a statement of the form “A or
B” is most conveniently proved by assuming A does not hold, and
proving B.)

The use of the connectives “and,” and “not” in logic and mathematics
coincide with their use in everyday language, and their meaning is clear.
The use of “or” in mathematics differs only slightly from everyday use, in
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that we insist on using the inclusive rather than the exclusive or in mathe-
matics.

The use of “if ... then” in mathematics, however, is a little mysterious.
In ordinary speech, we require some genuine connection, preferably a causal
connection between the “if” and the “then” in order to accept an “if ... then”
statement as sensible and true. For example:

• If you run an engine too fast, you will damage it.
• If it rains tomorrow, we will have to cancel the picnic.
• 2 < 3 implies 3/2 > 1.

These are sensible uses of ‘if ... then” in ordinary language, and they in-
volve causality: misuse of the engine will cause damage, rain will cause
the cancellation of the picnic, and 2 being less than 3 is an explanation for
3/2 being greater than 1.

On the other hand, the implications:

• If the Seventeenth of May is Norwegian independence day, then Julius
Caesar was the first emperor of Rome.
• 2 < 3 implies π > 3.14.

would ordinarily be regarded as nonsense, as modern Norwegian history
cannot have had any causal influence on ancient Roman history, and there is
no apparent connection between the two inequalities in the second example.
But according to our defined use of “if ... then,” both of these statements
must be accepted as a true. Even worse:

• If the Eighteenth of May is Norwegian independence day, then Julius
Caesar was the last emperor of Germany.
• If 2 > 3 then

√
2 is rational.

are also true statements, according to our convention. However unfortunate
these examples may seem, we find it preferable in mathematics and logic
not to require any causal connection between the “if” and the “then,” but to
judge the truth value of an implication “if A, then B” solely on the basis of
the truth values of A and B.

1.1.7. Some logical expressions. Here are a few commonly used log-
ical expressions:

• “A if B” means “B implies A.”
• “A only if B” means “A implies B.”
• “A if, and only if, B” means “A implies B, and B implies A.”
• “Unless” means “if not,” but “if not” is equivalent to “or.” (Check

this!)
• Sometimes “but” is used instead of “and” for emphasis.
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1.2. Quantified statements
1.2.1. Quantifiers. One frequently makes statements in mathematics

which assert that all the elements in some set have a certain property, or
that there exists at least one element in the set with a certain property. For
example:

• For every real number x, one has x2 ≥ 0.
• For all lines L and M, if L 6= M and L∩ M is non-empty, then L∩

M consists of exactly one point.
• There exists a positive real number whose square is 2.
• Let L be a line. Then there exist at least two points on L.

Statements containing one of the phrases “for every”, “for all”, “for
each”, etc. are said to have a universal quantifier. Such statements typi-
cally have the form:

• For all x, P(x),

where P(x) is some assertion about x. The first two examples above have
universal quantifiers.

Statements containing one of the phrases “there exists,” “there is,” “one
can find,” etc. are said to have an existential quantifier. Such statements
typically have the form:

• There exists an x such that P(x),

where P(x) is some assertion about x. The third and fourth examples above
contain existential quantifiers.

One thing to watch out for in mathematical writing is the use of implicit
universal quantifiers, which are usually coupled with implications. For ex-
ample,

• If x is a non-zero real number, then x2 is positive

actually means,

• For all real numbers x, if x 6= 0, then x2 is positive,

or

• For all non-zero real numbers x, the quantity x2 is positive.

1.2.2. Negation of Quantified Statements. Let us consider how to
form the negation of sentences containing quantifiers. The negation of the
assertion that every x has a certain property is that some x does not have
this property; thus the negation of

• For every x, P(x).

is

• There exists an x such that not P(x).
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For example the negation of the (true) statement

• For all non-zero real numbers x, the quantity x2 is positive

is the (false) statement

• There exists a non-zero real numbers x, such that x2 ≤ 0.

Similarly the negation of a statement

• There exists an x such that P(x).

is

• For every x, not P(x).

For example, the negation of the (true) statement

• There exists a real number x such that x2 = 2.

is the (false) statement

• For all real numbers x, x2 6= 2.

In order to express complex ideas, it is quite common to string together
several quantifiers. For example

• For every positive real number x, there exists a positive real number
y such that y2 = x.
• For every natural number m, there exists a natural number n such

that n > m.
• For every pair of distinct points p and q, there exists exactly one

line L such that L contains p and q.

All of these are true statements.
There is a rather nice rule for negating such statements with chains of

quantifiers: one runs through chain changing every universal quantifier to
an existential quantifier, and every existential quantifier to a universal quan-
tifier, and then one negates the assertion at the end.

For example, the negation of the (true) sentence

• For every positive real number x, there exists a positive real number
y such that y2 = x.

is the (false) statement

• There exists a positive real number x such that for every positive
real number y, one has y2 6= x.

1.2.3. Implicit universal quantifiers. Frequently “if ... then” sentences
in mathematics also involve the universal quantifier “for every”.

• For every real number x, if x 6= 0, then x2 > 0.

Quite often the quantifier is only implicitly present; in place of the sentence
above, it is common to write

• If x is a non-zero real number, then x2 > 0.
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The negation of this is not

• x is a non-zero real number and x2 ≤ 0,

as one would expect if one ignored the (implicit) quantifier. Because of the
universal quantifier, the negation is actually

• There exists a real number x such that x 6= 0 and x2 ≤ 0.

It might be preferable if mathematical writers made all quantifiers explicit,
but they don’t, so one must look out for and recognize implicit universal
quantifiers in mathematical writing. Here are some more examples of state-
ments with implicit universal quantifiers:

• If two distinct lines intersect, their intersection contains exactly one
point.
• If p(x) is a polynomial of odd degree with real coefficients, then p

has a real root.

Something very much like the use of implicit universal quantifiers also
occurs in everyday use of implications. In everyday speech, “if ... then”
sentences frequently concern the uncertain future, for example:

(∗) If it rains tomorrow, our picnic will be ruined.
One notices something strange if one forms the negation of this state-

ment. (When one is trying to understand an assertion, it is often illuminat-
ing to consider the negation.) According to our prescription for negating
implications, the negation ought to be:

• It will rain tomorrow, and our picnic will not be ruined.

But this is surely not correct! The actual negation of the sentence (∗) ought
to comment on the consequences of the weather without predicting the
weather:

(∗∗) It is possible that it will rain tomorrow, and our picnic will not
be ruined.

What is going on here? Any sentence about the future must at least
implicitly take account of uncertainty; the purpose of the original sentence
(∗) is to deny uncertainty, by issuing an absolute prediction:

• Under all circumstances, if it rains tomorrow, our picnic will be ru-
ined.

The negation (∗∗) denies the certainty expressed by (∗).
1.2.4. Order of quantifiers. It is important to realize that the order

of universal and existential quantifiers cannot be changed without utterly
changing the meaning of the sentence. For example, if you start with the
true statement:

• For every positive real number x, there exists a positive real number
y such that y2 = x
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and reverse the two quantifiers, you get the totally absurd statement:

• There exists a positive real number y such that for every positive
real number x, one has y2 = x.

1.2.5. Negation of complex sentences. Here is a summary of rules for
negating statements:

1. The negation of “A or B” is “not(A) and not(B).”
2. The negation of “A and B” is “not(A) or not(B).”
3. The negation of “For every x, P(x)” is “There exists x such that

not(P(x)).”
4. The negation of “There exists an x such that P(x)” is “For every x,

not(P(x)).”
5. The negation of “A implies B” is “A and not(B).”
6. Many statements with implications have implicit universal quanti-

fiers, and one must use the rule (3) for negating such sentences.

The negation of a complex statement (one containing quantifiers or log-
ical connectives) can be “simplified” step by step using the rules above,
until it contains only negations of simple statements. For example, a state-
ment of the form “For all x, if P(x), then Q(x) and R(x)” has a negation
which simplifies as follows:

not(For all x, if P(x), then Q(x) and R(x)) ≡
There exists x such that not( if P(x), then Q(x) and R(x)) ≡
There exists x such that P(x) and not( Q(x) and R(x)) ≡
There exists x such that P(x) and not(Q(x) ) or not(R(x) ) .

Let’s consider a special case of a statement of this form:

• For all real numbers x, if x < 0, then x3 < 0 and |x| = −x.

Here we have P(x) : x < 0, Q(x) : x3 < 0 and R(x) : |x| = −x. Therefore
the negation of the statement is:

• There exists a real number x such that x < 0, and x3 ≥ 0 or |x| 6=
−x.

Here is another example

• If L and M are distinct lines with non-empty intersection, then the
intersection of L and M consists of one point.

This sentence has an implicit universal quantifier and actually means:

• For every pair of lines L and M, if L and M are distinct and have
non-empty intersection, then the intersection of L and M consists
of one point.

Therefore the negation uses both the rule for negation of sentences with
universal quantifiers, and the rule for negation of implications:
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• There exists a pair of lines L and M such that L and M are distinct
and have non-empty intersection, and the intersection does not con-
sist of one point.

Finally, this can be rephrased as:

• There exists a pair of lines L and M such that L and M are distinct
and have at least two points in their intersection.

Exercise 1.2.1. Form the negation of each of the following sentences.
Simplify until the result contains negations only of simple sentences.
(a) Tonight I will go to a restaurant for dinner or to a movie.
(b) Tonight I will go to a restaurant for dinner and to a movie.
(c) If today is Tuesday, I have missed a deadline.
(d) For all lines L, L has at least two points.
(e) For every line L and every plane P , if L is not a subset of P ,

then L ∩ P has at most one point.

Exercise 1.2.2. Same instructions as for the previous problem Watch
out for implicit universal quantifiers.

(a) If x is a real number, then
√

x2 = |x|.
(b) If x is a natural number and x is not a perfect square, then√

x is irrational.
(c) If n is a natural number, then there exists a natural number

N such N > n.
(d) If L and M are distinct lines, then either L and M do not

intersect, or their intersection contains exactly one point.

1.2.6. Deductions. Logic concerns not only statements but also de-
ductions. Basically there is only one rule of deduction:

• If A, then B. A. Therefore B.

For quantified statements this takes the form:

• For all x, if A(x), then B(x). A(α). Therefore B(α).

Example:

• Every subgroup of an abelian group is normal. Z is an abelian
group, and 3Z is a subgroup. Therefore 3Z is a normal subgroup
of Z.

It doesn’t matter if you don’t know what this means! You don’t have to
know what it means in order to appreciate its form. Here is another example
of exactly the same form:

• Every car will eventually end up as a pile of rust. My brand new
blue-green Miata is a car. Therefore it will eventually end up as a
pile of rust.
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Most statements requiring proof are “if ... then” statements. To prove
“if A, then B,” one has to assume A, and prove B under this assumption.
To prove “For all x, A(x) implies B(x),” one assumes that A(α) holds for
a particular (but arbitrary) α, and proves B(α) for this particular α.

1.3. Sets
1.3.1. Sets and set operations. A set is a collection of (mathematical)

objects. The objects contained in a set are called its elements. We write
x ∈ A if x is an element of the set A. Two sets are equal if they contain ex-
actly the same elements. Very small sets can be specified by simply listing
their elements, for example A = {1,5,7}. For sets A and B, we say that A
is contained in B, and we write A ⊆ B if each element of A is also an ele-
ment of B. That is, if x ∈ A then x ∈ B. (Because of the implicit universal
quantifier, the negation of this is that there exists an element of A which is
not an element of B.)

Two sets are equal if they contain exactly the same elements. This might
seem like a quite stupid thing to mention, but in practice one often has two
quite different descriptions of the same set, and one has to do a lot of work
to show that the two sets contain the same elements. To do this, it is often
convenient to show that each is contained in the other. That is, A = B if,
and only if, A ⊆ B and B ⊆ A.

Subsets of a given set are frequently specified by a property or predi-
cate; for example, {x ∈ R : 1 ≤ x ≤ 4} denotes the set of all real numbers
between 1 and 4. Note that set containment is related to logical implica-
tion in the following fashion: If a property P(x) implies a property Q(x),
then the set corresponding to P(x) is contained in the set corresponding to
Q(x). For example, x < −2 implies that x2 > 4, so {x ∈ R : x < −2} ⊆
{x ∈ R : x2 > 4}.

The intersection of two sets A and B, written A ∩ B, is the set of ele-
ments contained in both sets. A∩ B = {x : x ∈ A and x ∈ B}. Note the
relation between intersection and the logical conjunction. If A = {x ∈ C :
P(x)} and B= {x ∈ C : Q(x)}, then A∩ B= {x ∈ C : P(x) and Q(x)}.

The union of two sets A and B, written A ∪ B, is the set of elements
contained in at least one of the two sets. A∪ B = {x : x ∈ A or x ∈ B}.
Set union and the logical disjunction are related as are set intersection and
logical conjunction. If A = {x ∈ C : P(x)} and B = {x ∈ C : Q(x)}, then
A ∪ B = {x ∈ C : P(x) or Q(x)}.

Given finitely many sets, for example, five sets A, B,C, D, E, one sim-
ilarly defines their intersection A ∩ B ∩ C ∩ D ∩ E to consist of those
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elements which are in all of the sets, and the union A ∪ B ∪ C ∪ D ∪ E
to consist of those elements which are in at least one of the sets.

There is a unique set with no elements at all which is called the empty
set, or the null set and usually denoted ∅.
Proposition 1.3.1. The empty set is a subset of every set.

Proof. Given an arbitrary set A, we have to show that ∅ ⊆ A; that is, for
every element x ∈ ∅, one has x ∈ A. The negation of this statement is that
there exists an element x ∈ ∅ such that x 6∈ A. But this negation is false,
because there are no elements at all in ∅! So the original statement is true.

If the intersection of two sets is the empty set, we say that the sets are
disjoint, or non-intersecting.

Here is a small theorem concerning the properties of set operations.

Proposition 1.3.2. For all sets A, B,C,

(a) A ∪ A = A, and A ∩ A = A.
(b) A ∪ B = B ∪ A, and A ∩ B = B ∩ A.
(c) (A ∪ B) ∪ C = A ∪ B ∪ C = A ∪ (B ∪ C), and (A ∩ B) ∩ C =

A ∩ B ∩C = A ∩ (B ∩C).
(d) A∩ (B∪C) = (A∩ B)∪ (A∩C), and A∪ (B∩C) = (A∪ B)∩

(A ∪C).

The proofs are just a matter of checking definitions.

Given two sets A and B, we define the relative complement of B in A,
denoted A \ B, to be the elements of A which are not contained in B. That
is, A \ B = {x ∈ A : x 6∈ B}.

In general, all the sets appearing in some particular mathematical dis-
cussion are subsets of some “universal” set U; for example, we might be
discussing only subsets of the real numbers R. (However, there is no uni-
versal set once and for all, for all mathematical discussions; the assumption
of a “set of all sets” leads to contradictions.) It is customary and convenient
to use some special notation such as C (B) for the complement of B relative
to U, and to refer to C (B) =U \ B simply as the complement of B. (The
notation C (B) is not standard.)

Exercise 1.3.1. The sets A∩ B and A \ B are disjoint and have union
equal to A.

Exercise 1.3.2 (de Morgan’s laws). For any sets A and B, one has:

C (A ∪ B) = C (A)∩C (B),
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and

C (A ∩ B) = C (A)∪C (B).

Exercise 1.3.3. For any sets A and B, A \ B = A ∩C (B).

Exercise 1.3.4. For any sets A and B,

(A ∪ B) \ (A ∩ B) = (A \ B)∪ (B \ A).

1.3.2. Functions. We recall the notion of a function from A to B and
some terminology regarding functions which is standard throughout math-
ematics. A function f from A to B is a rule which gives for each element
of a ∈ A an “outcome” in f (a) ∈ B. A is called the domain of the function,
B the co-domain, f (a) is called the value of the function at a, and the set
of all values, { f (a) : a ∈ A}, is called the range of the function.

In general, the range is only a subset of B; a function is said to be sur-
jective, or onto, if its range is all of B; that is, for each b ∈ B, there exists
an a ∈ A, such that f (a) = b. Figure 1.3.1 exhibits a surjective function.
Note that the statement that a function is surjective has to be expressed by
a statement with a string of quantifiers.

Figure 1.3.1. A Surjection

A function f is said to be injective, or one-to-one, if for each two dis-
tinct elements a and a′ in A, one has f (a) 6= f (a′). Equivalently, for all
a, a′ ∈ A, if f (a) = f (a′) then a = a′. Figure 1.3.2 displays an injective
and a non- injective function.

Finally f is said to be bijective if it is both injective and surjective. A
bijective function (or bijection) is also said to be a one-to-one correspon-
dence between A and B, since it matches up the elements of the two sets
one-to-one. When f is bijective, there is an inverse function f−1 defined
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Figure 1.3.2. Injective and Non-injective functions

by f−1(b) = a if, and only if, f (a) = b. Figure 1.3.3 displays a bijective
function.
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Figure 1.3.3. A Bijection

If f : X→ Y is a function and A is a subset of X, we write f (A) for
{ f (a) : a ∈ A} = {y ∈ Y : there exists a ∈ A such that y= f (a)}. We refer
to f (A) as the image of A under f . If B is a subset of Y , we write f−1(B)
for {x ∈ X : f (x) ∈ B}. We refer to f−1(B) as the preimage of B under f .

1.4. Induction
1.4.1. Proof by Induction. Suppose you need to climb a ladder. If

you are able to reach the first rung of the ladder and you are also able to
get from any one rung to the next, then there is nothing to stop you from
climbing the whole ladder. This is called the principle of mathematical in-
duction.
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Mathematical induction is often used to prove statements about the nat-
ural numbers, or about families of objects indexed by the natural numbers.
Suppose that you need to prove a statement of the form:

• For all n ∈ N, P(n),

where P(n) is a predicate. Examples of such statements are:

• For all n ∈ N, 1+ 2+ · · · + n = (n)(n+ 1)/2.
• For all n ∈ N, the number of permutations of n objects is n!.

To prove that P(n) holds for all n ∈ N, it suffices to show that P(1)
holds (you can reach the first rung), and that whenever P(k) holds, then
also P(k + 1) holds (you can get from any one rung to the next). Then,
P(n) holds for all n (you can climb the whole ladder).

Principle of Mathematical Induction For the statement “For all n ∈ N,
P(n)” to be valid, it suffices that:

1. P(1), and
2. For all k ∈ N, P(k) implies P(k+ 1).

To prove that “For all k ∈ N, P(k) implies P(k+ 1),” you have to as-
sume P(k) for a fixed but arbitrary value of k and prove P(k + 1) under
this assumption. This sometimes seems like a big cheat to beginners, for
we seem to be assuming what we want to prove, namely, that P(n) holds.
But it is not a cheat at all; we are just showing that it is possible to get from
one rung to the next.

As an example we prove the identity

P(n) : 1+ 2+ · · · + n = (n)(n+ 1)/2

by induction on n. The statement P(1) reads

1 = (1)(2)/2,
which is evidently true. Now, we assume P(k) holds for some k, that is,

1+ 2+ · · · + k = (k)(k+ 1)/2,

and prove that P(k + 1) also holds. The assumption of P(k) is called the
induction hypothesis. Using the induction hypothesis, we have

1+ 2+ · · · + k+ (k+ 1) = (k)(k+ 1)/2+ (k+ 1) = (k+ 1)
2

(k+ 2),

which is P(k+ 1). This completes the proof of the identity.
The principle of mathematical induction is equivalent to the

Well ordering principle Every non-empty subset of the natural numbers
has a least element.
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Another form of the principle of mathematical induction is the follow-
ing:

Principle of Mathematical Induction, 2nd form For the statement “For
all n ∈ N, P(n)” to be valid, it suffices that:

1. P(1), and
2. For all k ∈ N, if P(r) for all r ≤ k, then also P(k+ 1).

The two forms of the principle of mathematical induction and the well
ordering principle are all equivalent statements about the natural numbers.
That is, assuming any one of these principles, one can prove the other two.
The proof of the equivalence is somewhat more abstract than the actual sub-
ject matter of this course, so I prefer to omit it. When you have more expe-
rience with doing proofs, you may wish to provide your own proof of the
equivalence.

Recall that a natural number is prime if it is greater than 1 and not di-
visible by any natural number other than 1 and itself.

Proposition 1.1. Any natural number other than 1 can be written as a
product of prime numbers.

Proof. We prove this statement by using the second form of mathemati-
cal induction. Let P(n) be the statement: “n is a product of prime num-
bers.” We have to show that P(n) holds for all natural numbers n≥ 2. P(2)
is valid because 2 is prime. We make the inductive assumption that P(r)
holds for all r ≤ k, and prove P(k+ 1). P(k+ 1) is the statement that k+ 1
is a product of primes. If k + 1 is prime, there is nothing to show. Other-
wise k + 1 = (a)(b), where 2 ≤ a ≤ k and 2 ≤ b ≤ k. By the induction
hypothesis, both a and b are products of prime numbers so k + 1 = ab is
also a product of prime numbers.

Remark 1.2. It is a usual convention in mathematics to consider 0 to be the
sum of an empty collection of numbers and 1 to be the product of an empty
collection of numbers. This convention saves a lot of circumlocution and
argument by cases. So we will consider 1 to have a prime factorization as
well; it is the product of an empty collection of primes.

The following result is attributed to Euclid:

Theorem 1.3. There are infinitely many prime numbers.

Proof. We prove for all natural numbers n the statement P(n): there are
at least n prime numbers. P(1) is valid because 2 is prime. Assume P(k)
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holds and let 2,3, . . . , pk be the first k prime numbers. Consider the natural
number M = (2)(3) . . . (pk)+ 1. M is not divisible by any of the primes
2,3, . . . , pk, so either M is prime, or M is a product of prime numbers each
of which is greater than pk. In either case, there must exist prime numbers
which are greater than pk, so there are at least k+ 1 prime numbers.

1.4.2. Definitions by Induction. It is frequently necessary or conve-
nient to define some sequence of objects (numbers, sets, functions, ...) in-
ductively or recursively. That means the nth object is defined in terms of the
first, second,. . . , n− 1-st object, instead of there being a formula or proce-
dure which tells you once and for all how to define the nth object. For ex-
ample, the sequence of Fibonacci numbers is defined by the recursive rule:

f1 = f2 = 1 fn = fn−1 + fn−2 for n ≥ 3.

The well ordering principle, or the principle of mathematical induc-
tion, implies that such a rule suffices to define fn for all natural numbers
n. For f1 and f2 are defined by an explicit formula (we can get to the first
rung), and if f1, . . . , fk have been defined for some k, then the recursive
rule fk+1 = fk + fk−1 also defines fk+1 (we can get from one rung to the
next).

Principle of Inductive Definition: To define a sequence of objects A1, A2, . . .

it suffices to have:

1. A definition of A1.
2. For each k ∈ N, a definition of Ak+1 in terms of {A1, . . . , Ak}.

Here is an example relevant to this course: Suppose a patient is given a drug
which has the property that about 70body at a given moment is retained af-
ter one day. The patient recieves 300 mg of the drug each day at the same
time. We model this situation by the sequence xn of positive numbers de-
fined by

1. x1 = 300.
2. For each n ∈ N, xn+1 = 300+ .7xn.

Here is another example where the objects being defined are intervals
in the real numbers. The goal is to compute an accurate approximation to√

7. We define a sequence of intervals An = [an, bn] with the properties:

1. bn − an = 6/2n,
2. An+1 ⊆ An for all n ∈ N, and
3. a2

n < 7 and b2
n > 7 for all n ∈ N.

Define A1 = [1,7]. If A1, . . . , Ak have been defined, let ck = (ak + bk)/2.
If c2

k < 7, then define Ak+1 = [ck, bk]. Otherwise, define Ak = [ak, ck].
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(Remark that all the numbers ak, bk, ck are rational, so it is never true that
c2

k = 7.) You ought to do a proof (by induction) that the sets An defined
by this procedure do satisfy the properties listed above. This example can
easily be transformed into a computer program for calculating the square
root of 7.


