Chapter 1

Logic and Sets

1.1. Logical connectives

1.1.1. Unambiguous statements. Logic is concerned first of all with
the logical structure of statements, and with the construction of complex
statements from simple parts. A statement is a declarative sentence, which
is supposed to be either true or false.

A statement must be made completely unambiguousin order to bejudged
as true or false. Often this requires that the writer of a sentence has es-
tablished an adequate context which allows the reader to identify all those
things referred to in the sentence. For example, if you read in a narrative:
“Heis John’s brother,” you will not be able to understand this simple as-
sertion unless the author has already identified John, and also alowed you
to know who “he” issupposed to be. Likewise, if someone givesyou direc-
tions, starting “ Turn left at the corner,” you will be quite confused unless
the speaker also tellsyou what corner and fromwhat direction you are sup-
posed to approach this corner.

The same thing happensin mathematical writing. If you run acrossthe
sentence X2 > 0, you won't know what to make of it, unless the author
has established what x is supposed to be. If the author has written, “ Let x
be any real number. Then x2>0," then you can understand the statement,
and seethat itistrue.

A sentence containing variables, which is capable of becoming an an
unambiguous statement when the variables have been adequately identi-
fied, is called a predicate or, perhaps less pretentiously, a statement-with-
variables. Such a sentence is neither true nor false (nor comprehensible)
until the variables have been identified.

Itisthejob of every writer of mathematics (you, for example!) to strive
to abolish ambiguity. The first rule of mathematical writing is this: any
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symbol you use, and any object of any sort to which you refer, must be ad-
equately identified. Otherwise, what you write will be meaningless or in-
comprehensible.

Our first task will be to examine how simple statements can be combined
or modified by means of logical connectives to form new statements; the
validity of such a composite statement depends only on the validity of its
simple components.

The basic logical connectives are and, or, not, and if...then. We con-
sider thesein turn.

1.1.2. Theconjunction and. For statements A and B, the statement
“A and B” istrue exactly when both A and B aretrue. Thisis convention-
aly illustrated by atruth table:

A and B
t
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The table contains one row for each of the four possible combinations
of truth values of A and B; the last entry of each row is the truth value of
“A and B” corresponding to the given truth values of A and B.

For example:

e “Julius Caesar was the first Roman emperor, and Wilhelm 11 was
the last German emperor” istrue, because both parts are true.

o “Julius Caesar was the first Roman emperor, and Peter the Great
was the last German emperor” is false because the second part is
false.

o “Julius Caesar was the first Roman emperor, and the Seventeenth
of May isNorwegian independenceday.” istrue, because both parts
aretrue, but it isafairly ridiculous statement.

e “2 < 3,and x isthe area of a circle of radius 1" is true because
both parts are true.

1.1.3. Thedigunction or. For statements A and B, the statement “A
or B” istrue when at |east one of the component statementsistrue. Hereis
the truth table:
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In everyday speech, “or” sometimesistaken to mean “one or the other,
but not both,” but in mathematicsthe universal conventionisthat “ or” means
“one or the other or both.”

For example:

e “Julius Caesar wasthefirst Roman emperor, or Wilhelm 1 wasthe
last German emperor” istrue, because both parts are true.

o “ JuliusCaesar wasthefirst Roman emperor, or Peter the Great was
the last German emperor” istrue because the first part is true.

o “Julius Caesar was the first Chinese emperor, or Peter the Great
wasthelast German emperor.” isfalse, becauseboth partsarefalse.

e “2 < 3,0r mristheareaof acircleof radius 2" istrue because the
first part istrue.

1.1.4. The negation not. The negation “not(A)” of a statement A is
true when A isfalse and false when A istrue.

A | not(A)
t f
f t

Of course, given an actual statement A, we do not generally negate it
by writing “not(A).” Instead, we employ one of various means afforded by
our natural language.

Examples:

e Thenegationof “ 2 < 3" is* 2> 3".

e The negation of “ Julius Caesar was the first Roman emperor.” is
“ Julius Caesar was not the first Roman emperor.”

e Thenegation of “ | amwilling to compromiseon thisissue.” isl am
unwilling to compromise on thisissue.”

1.1.5. Negation combined with conjunction and disjunction. Atthis
point we might try to combine the negation “not” with the conjunction “and”
or the disjunction “or.” We compute the truth table of “not(A and B),” as
follows:
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A | B | AandB | not(A and B)
t]t t f
t|f f t
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Next, we observe that “not(A) or not(B)” has the same truth table as
“not(A and B).”

not(A) | not(B) | not(A) or not(B)
f f f
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We say that two statement formulassuch as* not(A and B)” and “ not(A)
or not(B)” are logically equivalent if they have the same truth table; when
we substitute actual statementsfor A and B inthelogically equivalent state-
ment formulas, we end up with two composite statements with exactly the
same truth value; that isoneistrueif, and only if, the other istrue.

What we have verified with truth tables also makes perfect intuitive
sense: “A and B” isfalseprecisely if not both A and B aretrue, that iswhen
one or the other, or both, of A and B isfase.

Exercise 1.1.1. Check similarly that “not(A or B)” is logically equiv-
alent to “not(A) and not(B),” by writing out truth tables. Also verify
that “not(not(A))” is equivalent to “A,” by using truth tables.

Thelogical equivaence of “not(A or B)” and ‘not(A) and not(B)” aso
makesintuitive sense. “A or B” istruewhen at least one of A and B istrue.
“A or B” isfase when neither A nor B istrue, that is when both are false.

Examples:

e The negation of “ Julius Caesar was the first Roman emperor, and
WIhelm Il was the last German emperor” is“ Julius Caesar was
not the first Roman emperor, or Wilhelm Il was not the last German
emperor.” Thisisfalse.

e The negation of “ Julius Caesar was the first Roman emperor, and
Peter the Great was the last German emperor” is“ Julius Caesar
was not the first Roman emperor, or Peter the Great was not the last
German emperor.” Thisistrue.

e The negation of “ Julius Caesar was the first Chinese emperor, or
Peter the Great wasthelast German emperor” “ Julius Caesar was
not the first Chinese emperor, and Peter the Great was not the last
German emperor.” Thisistrue.
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e Thenegation of “2 < 3, or wisthearea of acircle of radius2” is
“2> 3, and xr isnot thearea of acircle of radius 2.” Thisisfalse,
because the first part is false.

1.1.6. Theimplicationif...then. Next, weconsider theimplication* if
A thenB” or“ AimpliesB.” We define“if A, then B” to mean “not(A and
not(B)),” or, equivalently, “not(A) or B”; thisisfair enough, since we want
“if A, then B” to mean that one cannot have A without also having B. The
negation of “A impliesB” isthus“A and not(B)”.

Exercise 1.1.2. Write out the truth table for “A implies B” and for its
negation.

Definition 1.1.1. The contrapositive of the implication “ A implies B” is
“not(B) implies not(A).” The converse of the implication “ AimpliesB” is
“BimpliesA”.

The converse of atrue implication may be either true or false. For ex-
ample:
e Theimplication“If —3 > 2, then 9 > 4” istrue. The converseim-
plication“ If 9 > 4, then (—3) > 2" isfase.
However, the contrapositive of a true implication is always true, and the
contrapositive of afalseimplication is alwaysfalse, asis verified in Exer-
cise1.1.3.

Exercise 1.1.3. “Aimplies B” is equivalent to its contrapositive “not(B)
implies not(A).” Write out the truth tables to verify this.

Exercise 1.1.4. Sometimes students jump to the conclusion that “A
implies B” is equivalent to one or another of the following: “A and
B, “B implies A", or “not(A) implies not(B).” Check that in fact “A
implies B” is not equivalent to any of these by writing out the truth
tables and noticing the differences.

Exercise 1.1.5. Verify that “A implies (B implies C)” is logically equiv-
alent to “(A and B) implies C,” by use of truth tables.

Exercise 1.1.6. Verify that “A or B” is equivalent to ‘if ‘not(A), then
B,” by writing out truth tables. (Often a statement of the form “A or
B” is most conveniently proved by assuming A does not hold, and
proving B.)

The use of the connectives “and,” and “not” in logic and mathematics
coincide with their use in everyday language, and their meaning is clear.
The use of “or” in mathematics differs only slightly from everyday use, in
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that we insist on using the inclusive rather than the exclusive or in mathe-
matics.

The use of “if ... then” in mathematics, however, is alittle mysterious.
Inordinary speech, we require some genuine connection, preferably acausal
connection between the“if” and the “then” in order to accept an “if ... then”
statement as sensible and true. For example:

e If you run an engine too fast, you will damage it.
o |f it rainstomorrow, we will have to cancel the picnic.
e 2<3implies3/2 > 1.

These are sensible uses of ‘if ...then” in ordinary language, and they in-
volve causality: misuse of the engine will cause damage, rain will cause
the cancellation of the picnic, and 2 being less than 3 is an explanation for
3/2 being greater than 1.

On the other hand, the implications:

o |fthe Seventeenth of May isNorwegian independenceday, then Julius
Caesar was the first emperor of Rome.
e 2 < 3impliest > 3.14.

would ordinarily be regarded as nonsense, as modern Norwegian history
cannot have had any causal influence on ancient Roman history, and thereis
no apparent connection between thetwo inequalitiesin the second example.
But according to our defined use of “if ...then,” both of these statements
must be accepted as atrue. Even worse:

e IftheEighteenth of May isNorwegian independenceday, then Julius
Caesar was the last emperor of Germany.
e 12> 3then+/2isrational.

arealso true statements, according to our convention. However unfortunate
these examples may seem, we find it preferable in mathematics and logic
not to require any causal connection between the“if” and the “then,” but to
judge the truth value of an implication “if A, then B” solely on the basis of
the truth values of A and B.

1.1.7. Somelogical expressions. Hereareafew commonly used log-
ical expressions:
“Aif B means“B impliesA.”
“Aonly if B” means“A impliesB.”
“Aif, and only if, B” means“A implies B, and B implies A.”
“Unless” means “if not,” but “if not” is equivalent to “or.” (Check
thisl)
e Sometimes “but” is used instead of “and” for emphasis.
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1.2. Quantified statements

1.2.1. Quantifiers. One frequently makes statements in mathematics
which assert that all the elements in some set have a certain property, or
that there exists at least one element in the set with a certain property. For
example:

e For every rea number x, one has x> > 0.

e ForalllinesL and M, if L # M and L N M isnon-empty, then L N
M consists of exactly one point.

e There exists apositive real number whose squareis 2.

e Let L bealine. Then there exist at least two pointson L.

Statements containing one of the phrases “for every”, “for al”, “for
each”, etc. are said to have a universal quantifier. Such statements typi-
cally have the form:

e For all x, P(x),

where P(X) is some assertion about x. The first two examples above have
universal quantifiers.

Statements containing one of the phrases“thereexists,” “thereis,” “one
can find,” etc. are said to have an existential quantifier. Such statements
typically have the form:

e There exists an x such that P(x),

where P(X) issome assertion about x. Thethird and fourth examplesabove
contain existential quantifiers.

Onething to watch out for in mathematical writing isthe use of implicit
universal quantifiers, which are usually coupled with implications. For ex-
ample,

e If X isanon-zero real number, then x? is positive
actually means,

e For al real numbersx, if x # 0, then x? is positive,

” ou LU

or
e For al non-zero real numbers x, the quantity x? is positive.

1.2.2. Negation of Quantified Statements. Let us consider how to
form the negation of sentences containing quantifiers. The negation of the
assertion that every x has a certain property is that some x does not have
this property; thus the negation of

e For every x, P(X).
is
e There exists an x such that not P(x).
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For example the negation of the (true) statement
e For al non-zero real numbers x, the quantity x? is positive
isthe (false) statement
e There exists anon-zero real numbers x, such that x> < O.
Similarly the negation of a statement
e There exists an x such that P(x).

e For every x, not P(x).
For example, the negation of the (true) statement
e Thereexistsareal number x such that x* = 2.
isthe (false) statement
e For all real numbers x, x? # 2.

In order to express complex ideas, it is quite common to string together
several quantifiers. For example

e For every positivereal number X, thereexistsa positive real number
y such that y? = x.
e For every natural number m, there exists a natural number n such
that n > m.
e For every pair of distinct points p and q, there exists exactly one
line L such that L contains p and g.
All of these are true statements.

There is arather nice rule for negating such statements with chains of
quantifiers: one runs through chain changing every universal quantifier to
anexistential quantifier, and every existential quantifier to auniversal quan-
tifier, and then one negates the assertion at the end.

For example, the negation of the (true) sentence

o For every positivereal number x, thereexistsa positivereal number
y such that y? = x.

isthe (false) statement

e There exists a positive real number x such that for every positive
real number y, one has y? # x.

1.2.3. Implicit universal quantifiers. Frequently “if ... then” sentences
in mathematics also involve the universal quantifier “for every”.

o For every real number x, if x # 0, then X2 > 0.

Quite often the quantifier isonly implicitly present; in place of the sentence
above, it is common to write

e If xisanon-zero real number, then x2 > 0.
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The negation of thisis not
e Xisanon-zero real number and x2 < 0,

as onewould expect if oneignored the (implicit) quantifier. Because of the
universal quantifier, the negation is actually

e There exists a real number x such that x # 0 and x2 < 0.

It might be preferable if mathematical writers made all quantifiers explicit,
but they don’t, so one must look out for and recognize implicit universal
quantifiersin mathematical writing. Here are some more examples of state-
ments with implicit universal quantifiers:

o Iftwodistinct linesintersect, their inter section contains exactly one
point.

o If p(x) isapolynomial of odd degree with real coefficients, then p
has areal root.

Something very much like the use of implicit universal quantifiersalso
occurs in everyday use of implications. In everyday speech, “if ... then”
sentences frequently concern the uncertain future, for example:

(%) Ifit rainstomorrow, our picnic will be ruined.

One notices something strange if one forms the negation of this state-
ment. (When oneistrying to understand an assertion, it is often illuminat-
ing to consider the negation.) According to our prescription for negating
implications, the negation ought to be:

e It will rain tomorrow, and our picnic will not be ruined.

But thisissurely not correct! The actual negation of the sentence () ought
to comment on the consequences of the weather without predicting the
weather:

(%) Itispossiblethat it will rain tomorrow, and our picnic will not
be ruined.

What is going on here? Any sentence about the future must at least
implicitly take account of uncertainty; the purpose of the original sentence
(x) isto deny uncertainty, by issuing an absol ute prediction:

e Under all circumstances, if it rainstomorrow, our picnic will beru-
ined.

The negation (xx) deniesthe certainty expressed by (x).

1.2.4. Order of quantifiers. It isimportant to redlize that the order
of universal and existential quantifiers cannot be changed without utterly
changing the meaning of the sentence. For example, if you start with the
true statement:

e For every positivereal number x, there existsa positive real number
y such that y? = x
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and reverse the two quantifiers, you get the totally absurd statement:

e There exists a positive real number y such that for every positive
real number X, one has y? = x.

1.2.5. Negation of complex sentences. Hereisasummary of rulesfor
negating statements:

1. The negation of “A or B” is“not(A) and not(B).”

2. The negation of “A and B” is“not(A) or not(B).”

3. The negation of “For every x, P(x)" is “There exists x such that
not(P(x)).”

4. The negation of “There exists an x such that P(x)” is“For every x,
not(P(x)).”

5. Thenegation of “A impliesB” is“A and not(B).”

6. Many statements with implications have implicit universal quanti-
fiers, and one must use the rule (3) for negating such sentences.

The negation of acomplex statement (one contai ning quantifiersor log-
ical connectives) can be “simplified” step by step using the rules above,
until it contains only negations of simple statements. For example, a state-
ment of the form “For al x, if P(x), then Q(x) and R(x)” has a negation
which simplifies as follows:

not(For al x, if P(x), then Q(x) and R(xX)) =
There exists x such that not( if P(x), then Q(x) and R(x)) =
There exists x such that P(x) and not( Q(x) and R(x)) =
There exists x such that P(x) and not(Q(x) ) or not(R(x) ) .
Let's consider a special case of a statement of thisform:
e For all real numbersx, if x < 0, then X3 < 0 and |x| = —x.

Herewe have P(x) : x < 0, Q(X) : X3 < 0and R(x) : |x| = —x. Therefore
the negation of the statement is:

e There exists a real number x such that x < 0, and x3 > 0 or |x| #
—X.

Hereis another example

e If L and M are distinct lines with non-empty intersection, then the
intersection of L and M consists of one point.
This sentence has an implicit universal quantifier and actually means.
e For every pair of lines L and M, if L and M are distinct and have
non-empty intersection, then the intersection of L and M consists
of one point.

Therefore the negation uses both the rule for negation of sentences with
universal quantifiers, and the rule for negation of implications:
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e Thereexistsapair of lines L and M such that L and M are distinct
and have non-empty inter section, and theinter section does not con-
sist of one point.

Finally, this can be rephrased as:

e Thereexistsapair of lines L and M such that L and M are distinct
and have at least two pointsin their intersection.

Exercise 1.2.1. Form the negation of each of the following sentences.
Simplify until the result contains negations only of simple sentences.

(@) Tonight I will go to a restaurant for dinner or to a movie.

(b)  Tonight I will go to a restaurant for dinner and to a movie.

(c) Iftoday is Tuesday, | have missed a deadline.

(d) Foralllines L, L has at least two points.

(e) For every line L and every plane P, if L is not a subset of P,
then LN P has at most one point.

Exercise 1.2.2. Same instructions as for the previous problem Watch
out for implicit universal quantifiers.

(@) If xis a real number, then v/x2 = |X|.

(b) If x is a natural number and x is not a perfect square, then
J/Xis irrational.

(c) If nis a natural number, then there exists a natural number
N such N > n.

(d) If L and M are distinct lines, then either L and M do not
intersect, or their intersection contains exactly one point.

1.2.6. Deductions. Logic concerns not only statements but also de-
ductions. Basically thereis only one rule of deduction:
e IT A, then B. A. Therefore B.
For quantified statements this takes the form:
e For all x, if A(x), then B(X). A(«). Therefore B(«).
Example:
e Every subgroup of an abelian group is normal. Z is an abelian
group, and 37Z is a subgroup. Therefore 3Z is a normal subgroup
of Z.

It doesn’t matter if you don’'t know what this means! You don’t have to
know what it meansin order to appreciateitsform. Hereisanother example
of exactly the same form:

e Every car will eventually end up as a pile of rust. My brand new
blue-green Miata is a car. Therefore it will eventually end up as a
pile of rust.
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Most statements requiring proof are “if ... then” statements. To prove
“if A, then B,” one has to assume A, and prove B under this assumption.
To prove “For al x, A(x) implies B(x),” one assumes that A(«) holds for
aparticular (but arbitrary) «, and proves B(«) for this particular «.

1.3. Sets

1.3.1. Setsand set operations. A setisacollection of (mathematical)
objects. The objects contained in a set are called its elements. We write
x € Aif xisan element of the set A. Two setsare equal if they contain ex-
actly the same elements. Very small sets can be specified by simply listing
their elements, for example A = {1, 5, 7}. For sets A and B, we say that A
is contained in B, and we write A C B if each element of Aisalso an ele-
ment of B. That is, if x e Athen x € B. (Because of the implicit universal
quantifier, the negation of thisisthat there exists an element of Awhichis
not an element of B.)

Two setsareequal if they contain exactly the same elements. Thismight
seem like a quite stupid thing to mention, but in practice one often has two
quite different descriptions of the same set, and one has to do alot of work
to show that the two sets contain the same elements. To do this, it is often
convenient to show that each is contained in the other. That is, A = B if,
andonly if, AC Band BC A.

Subsets of a given set are frequently specified by a property or predi-
cate; for example, {x € R : 1 < x < 4} denotes the set of all real numbers
between 1 and 4. Note that set containment is related to logical implica-
tion in the following fashion: If a property P(x) implies a property Q(x),
then the set corresponding to P(x) is contained in the set corresponding to
Q(x). For example, x < —2 impliesthat X2 > 4, 0 {x e R : x < —2} C
(xeR: x> 4.

The intersection of two sets A and B, written AN B, isthe set of €le-
ments contained in both sets. ANB={x:xe A and xe B}. Notethe
relation between intersection and the logical conjunction. If A= {xe C:
Px)}andB={xeC:QX)},thenANB={xeC:P(xX) and Q(X)}.

The union of two sets A and B, written AU B, is the set of elements
contained in at least one of thetwo sets. AUB={x:xe A or xe B}
Set union and the logical disjunction are related as are set intersection and
logical conjunction. If A={xe C: P(x)} and B= {x e C: Q(x)}, then
AUB={xeC:Px) o Q(x)}.

Givenfinitely many sets, for example, fivesets A, B, C, D, E, onesim-
ilarly defines their intersection AN B N C N D N E to consist of those
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elements which arein all of the sets, and theunion AUBU CU DU E
to consist of those elements which arein at least one of the sets.

Thereisaunique set with no elements at al which is called the empty
set, or the null set and usually denoted @.

Proposition 1.3.1. The empty set is a subset of every set.

Proof. Given an arbitrary set A, we have to show that ¥ C A, that is, for
every element x € ¢, one has x € A. The negation of this statement is that
there exists an element x € ¢ such that x ¢ A. But this negation is false,
because there are no elements at al in ¢! So the original statement istrue.

(]

If the intersection of two sets is the empty set, we say that the sets are
digoint, or non-intersecting.
Hereis asmall theorem concerning the properties of set operations.

Proposition 1.3.2. For all sets A, B, C,

@ AUA=Aand ANA=A

() AUB=BUA and ANB=BNA.

(0 (AuB)UC=AUBUC=AUBUC),and (ANB)NC =
ANBNC=AN(BNOC).

(d ANnBUC)=(ANB)U(ANC),and AU(BNC)=(AUB)N
(AU Q).

The proofs are just a matter of checking definitions.

Given two sets A and B, we define the relative complement of B in A,
denoted A\ B, to be the elements of A which are not contained in B. That
is, A\B={xe A:x¢ B}.

In general, al the sets appearing in some particular mathematical dis-
cussion are subsets of some “universal” set U; for example, we might be
discussing only subsets of the real numbers R. (However, there is no uni-
versal set onceand for al, for all mathematical discussions; the assumption
of a“set of all sets’ leadsto contradictions.) Itiscustomary and convenient
to use some special notation such asC ( B) for the complement of B relative
to U, and to refer to C (B) = U \ B simply as the complement of B. (The
notation C (B) is not standard.)

Exercise 1.3.1. The sets An Band A\ B are disjoint and have union
equal to A.

Exercise 1.3.2 (de Morgan's laws). For any sets A and B, one has:
C(AuB)=C(ANC(B),
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and
C(ANB)=C(A)UC(B).
Exercise 1.3.3. For any sets Aand B, A\ B= ANC (B).

Exercise 1.3.4. For any sets A and B,
(AUB)\ (ANB)=(A\B)U(B\ A).

1.3.2. Functions. We recall the notion of a function from A to B and
some terminology regarding functions which is standard throughout math-
ematics. A function f from Ato B isarule which givesfor each element
of ae Aan“outcome” in f(a) € B. Aiscalled thedomain of the function,
B the co-domain, f(a) is called the value of the function at a, and the set
of al values, { f (a) : a € A}, iscaled the range of the function.

In genera, the range is only a subset of B; afunctionissaid to be sur-
jective, or onto, if itsrangeisal of B; that is, for each b € B, there exists
ana e A, suchthat f(a) = b. Figure 1.3.1 exhibits a surjective function.
Note that the statement that a function is surjective has to be expressed by
a statement with a string of quantifiers.

(e] (e]
o (e]
(e] (e]
(e] (e]
(e] (e]
(e]

(e]

Figure1.3.1. A Surjection

A function f issaid to be injective, or one-to-one, if for each two dis-
tinct elementsa and &’ in A, one has f(a) # f(a'). Equivaently, for all
a,a e A if f(a)= f(@)thena=a’. Figure 1.3.2 displays an injective
and a non- injective function.

Finally f issaid to be bijectiveif it is both injective and surjective. A
bijective function (or bijection) is also said to be a one-to-one correspon-
dence between A and B, since it matches up the elements of the two sets
one-to-one. When f is bijective, there is an inverse function f~* defined
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Figure 1.3.2. Injective and Non-injective functions

by f~1(b) = aif, and only if, f(a) = b. Figure 1.3.3 displays a bijective
function.

N

4
5

Figure 1.3.3. A Bijection

If f: X — Yisafunctionand Aisasubset of X, wewrite f(A) for
{f(a):ae Al={yeY: thereexistsac Asuchthat y= f(a)}. Werefer
to f(A) astheimageof Aunder f. If Bisasubset of Y, wewrite f~1(B)
for {x e X: f(x) € B}. Werefer to f~1(B) asthe preimage of B under f.

1.4. Induction

1.4.1. Proof by Induction. Suppose you need to climb a ladder. If
you are able to reach the first rung of the ladder and you are also able to
get from any one rung to the next, then there is nothing to stop you from
climbing the whole ladder. Thisis called the principle of mathematical in-
duction.
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Mathematical induction isoften used to prove statements about the nat-
ural numbers, or about families of objects indexed by the natural numbers.
Suppose that you need to prove a statement of the form:

e Forallne N, P(n),
where P(n) isapredicate. Examples of such statements are:

e ForalneN,14+2+---+n=(n)(n+1)/2
e For all n e N, the number of permutations of n objectsisn!.

To prove that P(n) holds for al n € N, it suffices to show that P(1)
holds (you can reach the first rung), and that whenever P(k) holds, then
also P(k + 1) holds (you can get from any one rung to the next). Then,
P(n) holdsfor al n (you can climb the whole ladder).

Principle of Mathematical Induction For the statement “ For all n € N,
P(n)” to bevalid, it suffices that:

1. P(1),and

2. Forall ke N, P(k) implies P(k+ 1).

To provethat “For all k e N, P(k) implies P(k+ 1),” you haveto as-
sume P (k) for afixed but arbitrary value of k and prove P(k + 1) under
this assumption. This sometimes seems like a big cheat to beginners, for
we seem to be assuming what we want to prove, namely, that P(n) holds.
Butitisnot acheat at all; we arejust showing that it is possible to get from
one rung to the next.

As an example we prove the identity

P(n):14+24+---+n=Mn)(n+1)/2
by induction on n. The statement P(1) reads
1=1)(2)/2,
which is evidently true. Now, we assume P(k) holds for somek, that is,
14+2+---+k=(k(k+1)/2,

and prove that P(k + 1) aso holds. The assumption of P(Kk) is called the
induction hypothesis. Using the induction hypothesis, we have

(k+1)

1424 +k+ k+D = (Ok+D/2+ k+1) = —

(k+2),

whichis P(k + 1). This completes the proof of the identity.
The principle of mathematical induction is equivalent to the

WEell ordering principle Every non-empty subset of the natural numbers
has a least element.
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Another form of the principle of mathematical induction isthe follow-
ing:
Principle of Mathematical I nduction, 2nd form For the statement “ For
all ne N, P(n)” tobevalid, it suffices that:

1. P(1),and
2. Forall ke N,if P(r) for all r <k, thenalso P(k+1).

The two forms of the principle of mathematical induction and the well
ordering principle are all equivalent statements about the natural numbers.
That is, assuming any one of these principles, one can prove the other two.
The proof of the equival enceis somewhat more abstract than the actual sub-
ject matter of thiscourse, so | prefer to omit it. When you have more expe-
rience with doing proofs, you may wish to provide your own proof of the
equivalence.

Recall that a natural number is primeif it is greater than 1 and not di-
visible by any natural number other than 1 and itself.

Proposition 1.1. Any natural number other than 1 can be written as a
product of prime numbers.

Proof. We prove this statement by using the second form of mathemati-
cal induction. Let P(n) be the statement: “nis a product of prime num-
bers.” We haveto show that P(n) holdsfor al natural numbersn > 2. P(2)
isvalid because 2 is prime. We make the inductive assumption that P(r)
holdsfor al r <k, and prove P(k+1). P(k+ 1) isthe statement that k + 1
isaproduct of primes. If k4 1 is prime, there is nothing to show. Other-
wisek+ 1= (a)(b), where2 < a < kand 2 < b < k. By the induction
hypothesis, both a and b are products of prime numberssok+ 1 =ab is
also a product of prime numbers. O

Remark 1.2. Itisausual conventionin mathematicsto consider 0to bethe
sum of an empty collection of numbers and 1 to be the product of an empty
collection of numbers. This convention saves alot of circumlocution and
argument by cases. So we will consider 1 to have a prime factorization as
well; it isthe product of an empty collection of primes.

Thefollowing result is attributed to Euclid:

Theorem 1.3. There are infinitely many prime numbers.

Proof. We prove for al natural numbers n the statement P(n): there are
at least n prime numbers. P(1) isvalid because 2 is prime. Assume P(K)
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holdsandlet2, 3, ..., px bethefirst k primenumbers. Consider the natural
number M = (2)(3)...(px) + 1. M isnot divisible by any of the primes
2,3,..., px, Soeither M isprime, or M isaproduct of prime numberseach
of whichis greater than pg. In either case, there must exist prime numbers
which are greater than py, so there are at least k + 1 prime numbers. [

1.4.2. Definitions by Induction. It isfrequently necessary or conve-
nient to define some sequence of objects (numbers, sets, functions, ...) in-
ductively or recursively. That meansthe nth object isdefined intermsof the
first, second.,. .., n — 1-st object, instead of there being aformulaor proce-
dure which tells you once and for al how to define the nth object. For ex-
ample, the sequence of Fibonacci numbersis defined by therecursiverule:

fi="0f=1 fy="f_1+ fho forn>3.

The well ordering principle, or the principle of mathematical induc-
tion, implies that such a rule suffices to define f,, for all natural numbers
n. For f; and f, are defined by an explicit formula (we can get to the first
rung), and if fq,..., fx have been defined for some k, then the recursive
rule fyy1 = fx + fx_1 also defines fy 1 (we can get from one rung to the
next).

Principleof Inductive Definition: To defineasequenceof objects Aq, Ao, ...

it sufficesto have:

1. A definition of A;.
2. Foreach k € N, adefinition of A, ; intermsof {Aq, ..., Ad}.

Hereisan examplerelevant to thiscourse: Supposeapatientisgivenadrug
which hasthe property that about 70body at a given moment isretained af-
ter one day. The patient recieves 300 mg of the drug each day at the same
time. We model this situation by the sequence X, of positive numbers de-
fined by

1. x; = 300.

2. Foreachn e N, Xpy1 = 300+ .7Xp.

Here is another example where the objects being defined are intervals
in the real numbers. The goal isto compute an accurate approximation to
/7. We define a sequence of intervals A, = [an, by] with the properties:

1. bp—a,=6/2",

2. A1 C Ayfordlne N, and

3. a2 <7andb? > 7foralneN.

Define Ay =[1,7]. If Aq, ..., A« have been defined, let ¢, = (ayx + by) /2.
If cﬁ < 7, then define Ax,1 = [Ck, by]. Otherwise, define Ay = [ay, Cx]-
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(Remark that all the numbers ay, by, ¢k arerational, so it is never true that
cﬁ = 7.) You ought to do a proof (by induction) that the sets A, defined
by this procedure do satisfy the properties listed above. This example can
easily be transformed into a computer program for calculating the square
root of 7.



