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CHAPTER 6

Rings
6.1. A Recollection of Rings
We encountered the definitions of rings and fields in Section 1.11.
Let us recall them here for convenience.

Definition 6.1.1. A ring is a nonempty set R with two operations:
addition, denoted here by +, and multiplication, denoted by juxta-
position, satisfying the following requirements:

(a) Under addition, R is an abelian group.
(b) Multiplication is associative.
(c) Multiplication distributes over addition: a(b+c) = ab+ac,

and (b + c)a = ba + ca for all a, b, c ∈ R.

A ring is called commutative if multiplication is commutative,
ab = ba for all elements a, b in the ring. Recall that a multiplicative
identity in a ring is an element 1 such that 1a = a1 = a for all
elements a in the ring. An element a in a ring with multiplicative
identity 1 is a unit or invertible if there exists an element b such that
ab = ba = 1.

Some authors include the the existence of a multiplicative iden-
tity in the definition of a ring, but as this requirement excludes many
natural examples, we will not follow this practice.

Let’s make a few elementary deductions from the ring axioms:
Note that the distributive law a(b + c) = ab + ac says that the map
La : b 7→ ab is a group homomorphism of (R, +) to itself. It follows
that La(0) = 0 and La(−b) = −La(b) for any b ∈ R. This translates
to a 0 = 0 and a(−b) = −ab. Similarly, 0 a = 0, and (−b)a = −ba.
For n ∈ Z and a ∈ R, since nb is the n–th power of b in the abelian
group (R, +), we also have La(nb) = nLa(b); that is, a(nb) = n(ab).
Similarly, (na)b = n(ab).
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6.1. A RECOLLECTION OF RINGS 243

In particular, if R has a multiplicative identity element 1, then
(n 1)b = n(1 b) = nb and b(n 1) = n(b 1) = nb for any n ∈ Z and
b ∈ R.

A field is a special sort of ring:

Definition 6.1.2. A field is a commutative ring with multiplicative
identity element 1 (different from 0) in which every nonzero element
is a unit.

We gave a number of examples of rings and fields in Section 1.11,
which you should review now. There are (at least) four main sources
of ring theory:

1. Numbers. The familiar number systems Z, Q, R, and C are rings.
In fact, all of them but Z are fields.

2. Polynomial rings in one or several variables. We have discussed
polynomials in one variable over a field in Section 1.8. Polynomials
in several variables, with coefficients in any commutative ring R with
identity element, have a similar description: Let x1, . . . , xn be vari-
ables, and let I = (i1, . . . , in) be a so–called multi-index, namely, a se-
quence of nonnegative integers of length n. Let xI denote the mono-
mial xI = xi1

1 xi2
2 · · ·xin

n . A polynomial in the variables x1, . . . , xn

with coefficients in R is an expression of the form
∑

I αIx
I , where

the sum is over multi-indices, the αI are elements of R, and αI = 0
for all but finitely many multi-indices I.

Example 6.1.3. 7xyz + 3x2yz2 + 2yz3 is an element of Q[x, y, z].
The three nonzero terms correspond to the multi-indices

(1, 1, 1, ), (2, 1, 2), and (0, 1, 3).

Polynomials in several variables are added and multiplied ac-
cording to the following rules:

∑

I

αIx
I +

∑

I

βIx
I =

∑

I

(αI + βI)x
I ,

and

(
∑

I

αIx
I)(

∑

J

βJxJ) =
∑

I

∑

J

αIβJxI+J =
∑

L

γLxL,

where γL =
∑

I,J

I+J=L

αIβJ .

With these operations, the set R[x1, . . . , xn] of polynomials in
the variables {x1 . . . , xn} with coefficients in R is a commutative
ring with multiplicative identity.
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244 6. RINGS

Example 6.1.4. Let p(x, y, z) = 7xyz+3x2yz2+2yz3 and q(x, y, z) =
2 + 3xz + 2xyz. Then

p(x, y, z) + q(x, y, z) = 2 + 3xz + 9xyz + 3x2yz2 + 2yz3,

and

p(x, y, z)q(x, y, z) = 14x y z + 27x2 y z2 + 14x2 y2 z2 + 4 y z3

+ 9x3 y z3 + 6x3 y2 z3 + 6x y z4 + 4x y2 z4.

3. Rings of functions. Let X be any set and let R be a field. Then
the set of functions defined on X with values in R is a ring, with
the operations defined pointwise: (f + g)(x) = f(x) + g(x), and
(fg)(x) = f(x)g(x).

If X is a metric space (or a topological space) and R is equal to
one of the fields R or C, then the set of continuous R–valued functions
on X, with pointwise operations, is a ring. The essential point here
is that the sum and product of continuous functions are continuous.
(If you are not familiar with metric or topological spaces, just think
of X as a subset of R.)

If X is an open subset of C, then the set of holomorphic C–valued
functions on X is a ring. (If you are not familiar with holomorphic
functions, just ignore this example.)

4. Endomorphism rings and matrix rings. Let V be a vector space
over a field K. The set EndK(V ) = HomK(V, V ) of linear maps
from V to V has two operations: Addition of linear maps is defined
pointwise, (S + T )(v) = S(v) + T (v). Multiplication of linear maps,
however, is defined by composition: ST (v) = S(T (v)). With these
operations, EndK(V ) is a ring.

The set Matn(K) of n-by-n matrices with entries in K is a ring,
with the usual operations of addition and multiplication of matrices.

If V is n-dimensional over K, then the rings EndK(V ) and Matn(K)
are isomorphic. In fact, for any ordered basis B = (v1, . . . , vn) of V
the map that assigns to each linear map T : V → V its matrix [T ]B,B

with respect to B is a ring isomorphism from End(V ) to Matn(K).

The notion of subring was introduced informally in Section 1.11;
let us give the precise definition.

Definition 6.1.5. A nonempty subset S of a ring R is called a
subring if S is a ring with the two ring operations inherited from R.

For S to be a subring of R, it is necessary and sufficient that

1. For all elements x and y of S, the sum and product x + y
and xy are elements of S.
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6.1. A RECOLLECTION OF RINGS 245

2. For all x ∈ S, the additive opposite −x is an element of S.

We gave a number of examples of subrings in Example 1.11.5.
You are asked to verify these examples, and others, in the Exercises.

For any ring R and any subset S ⊆ R there is a smallest subring
of R that contains S, which is called the subring generated by S.
We say that R is generated by S as a ring if no proper subring of R
contains S.

A “constructive” view of the subring generated by S is that it
consists of all possible finite sums of finite products ±T1T2 · · ·Tn,
where Ti ∈ S. In particular, the subring generated by a single ele-
ment T ∈ R is the set of all sums

∑n
i=1 niT

i. (Note there is no term
for i = 0.) The subring generated by T and the multiplicative iden-
tity 1 (assuming that R has a multiplicative identity) is the set of
all sums n01 +

∑n
i=1 niT

i =
∑n

i=0 niT
i, where we use the convention

T 0 = 1.
The subring generated by S is equal to the intersection of the

family of all subrings of R that contain S; this family is nonempty
since R itself is such a subring. (As for subgroups, the intersection
of an arbitrary nonempty collection of subrings is a subring.)

Example 6.1.6. Let S be a subset of EndK(V ) for some vector
space V . There are two subrings of EndK(V ) associated to S. One
is the subring generated by S, which consists of all finite sums of
products of elements of S. Another is

S ′ = {T ∈ EndK(V ) : TS = ST for all S ∈ S},

the so–called commutant of S in End(V ).

Example 6.1.7. Let G be a subgroup of GL(V ), the group of in-
vertible linear transformations of a vector space V over a field K. I
claim that the subring of EndK(V ) generated by G is the set of finite
sums

∑

g∈G ngg, where ng ∈ Z. In fact, we can easily check that this
set is closed under taking sums, additive opposites, and products.

Example 6.1.8. The previous example inspires the following con-
struction. Let G be any finite group. Consider the set ZG of for-
mal linear combinations of group elements, with coefficients in Z,
∑

g∈G ag g. (If you like, you can identify such a sum with the function
g 7→ ag from G to Z.) Two such expressions are added coefficient-
by-coefficient,

∑

g∈G

ag g +
∑

g∈G

bg g =
∑

g∈G

(ag + bg) g,
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246 6. RINGS

and multiplied according to the rule
∑

g∈G

ag g
∑

h∈G

bh h =
∑

g∈G

∑

h∈G

agbh gh =
∑

ℓ∈G

(
∑

g∈G

agbg−1ℓ) ℓ.

You are asked to verify that ZG is a ring in the Exercises. ZG is
called the integer group ring of G.

Instead of taking coefficients in Z, we can also take coefficients
in C, for example; the result is called the complex group ring of G.

Example 6.1.9. Let R be a commutative ring with multiplicative
identity element. A formal power series in one variable with co-
efficients in R is a formal infinite sum

∑∞
i=0 αix

i. The set of for-
mal power series is denoted R[[x]]. Formal power series are added
coefficient-by-coefficient,

∞
∑

i=0

αix
i +

∞
∑

i=0

βix
i =

∞
∑

i=0

(αi + βi)x
i.

The product of formal power series is defined as for polynomials:

(
∞
∑

i=0

αix
i)(

∞
∑

i=0

βix
i) =

∞
∑

i=0

γix
i,

where γn =
∑n

j=0 αjβn−j . With these operations, the set of formal
power series is a commutative ring.

Definition 6.1.10. Two rings R and S are isomorphic if there is a
bijection between them that preserves both the additive and multi-
plicative structures. That is, there is a bijection ϕ : R → S satisfying
ϕ(a + b) = ϕ(a) + ϕ(b) and ϕ(ab) = ϕ(a)ϕ(b) for all a, b ∈ R.

Definition 6.1.11. The direct sum of several rings R1, R2, . . . , Rn

is the Cartesian product endowed with the operations

(r1, r2, . . . , rn) + (r′1, r
′
2, . . . , r

′
s) = (r1 + r′1, r2 + r′2, . . . , rn + r′n)

and

(r1, r2, . . . , rn)(r′1, r
′
2, . . . , r

′
s) = (r1r

′
1, r2r

′
2, . . . , rnr′n).

The direct sum of R1, R2, . . . , Rn is denoted R1 ⊕ R2 ⊕ · · · ⊕ Rn.

Example 6.1.12. According to the discussion at the end of Section
1.11 and in Exercise 1.11.10, if a and b are relatively prime natural
numbers, then Zab and Za ⊕ Zb are isomorphic rings. Consequently,
if a1, a2, . . . , an are pairwise relatively prime, then Za1a2···an

∼= Za1
⊕

Za2
⊕ · · · ⊕ Zan

as rings.
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6.1. A RECOLLECTION OF RINGS 247

Exercises 6.1
6.1.1. Show that if a ring R has a multiplicative identity, then the
multiplicative identity is unique. Show that if an element r ∈ R has
a left multiplicative inverse r′ and a right multiplicative inverse r′′,
then r′ = r′′.

6.1.2. Verify that R[x1, . . . , xn] is a ring for any commutative ring
R with multiplicative identity element.

6.1.3. Consider the set of infinite-by-infinite matrices with real en-
tries that have only finitely many nonzero entries. (Such a matrix
has entries aij , where i and j are natural numbers. For each such
matrix, there is a natural number n such that aij = 0 if i ≥ n or
j ≥ n.) Show that the set of such matrices is a ring without identity
element.

6.1.4. Show that (a) the set of upper triangular matrices and (b) the
set of upper triangular matrices with zero entries on the diagonal are
both subrings of the ring of all n-by-n matrices with real coefficients.
The second example is a ring without multiplicative identity.

6.1.5. Show that the set of matrices with integer entries is a sub-
ring of the ring of all n-by-n matrices with real entries. Show that
the set of matrices with entries in N is closed under addition and
multiplication but is not a subring.

6.1.6. Show that the set of symmetric polynomials in three variables
is a subring of the ring of all polynomials in three variables. A
polynomial is symmetric if it remains unchanged when the variables
are permuted, p(x, y, z) = p(y, x, z), and so on.

6.1.7. Experiment with variations on the preceding examples and
exercises by changing the domain of coefficients of polynomials, val-
ues of functions, and entries of matrices: for example, polynomials
with coefficients in the natural numbers, complex–valued functions,
matrices with complex entries. What is allowed and what is not
allowed for producing rings?

6.1.8. Show that EndK(V ) is a ring, for any vector space V over a
field K.

6.1.9. Suppose ϕ : R → S is a ring isomorphism. Show that R has a
multiplicative identity if, and only if, S has a multiplicative identity.
Show that R is commutative if, and only if, S is commutative.
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248 6. RINGS

6.1.10. Show that the intersection of any family of subrings of a
ring is a subring. Show that the subring generated by a subset S of
a ring R is the intersection of all subrings R′ such that S ⊆ R′ ⊆ R.

6.1.11. Show that the set R(x) of rational functions p(x)/q(x),
where p(x), q(x) ∈ R[x] and q(x) 6= 0, is a field. (Note the use of
parentheses to distinguish this ring R(x) of rational functions from
the ring R[x] of polynomials.)

6.1.12. Let R be a ring and X a set. Show that the set Fun(X, R) of
functions on X with values in R is a ring. Show that R is isomorphic
to the subring of constant functions on X. Show that Fun(X, R) is
commutative if, and only if, R is commutative. Suppose that R has
an identity; show that Fun(X, R) has an identity and describe the
units of Fun(X, R).

6.1.13. Let S ⊆ EndK(V ), where V is a vector space over a field
K. Show that

S ′ = {T ∈ EndK(V ) : TS = ST for all S ∈ S}

is a subring of EndK(V ).

6.1.14. Let V be a vector space over a field K. Let G be a subgroup
of GL(V ). Show that the subring of EndK(V ) generated by G is
the set of all linear combinations

∑

g ngg of elements of G, with
coefficients in Z.

6.1.15. Verify that the “group ring” ZG of Example 6.1.8 is a ring.

6.1.16. Consider the group Z2 written as {e, ξ}, where ξ2 = e. The
complex group ring CZ2 consists of formal sums ae+bξ, with a, b ∈ C.
Show that the map a+bξ 7→ (a+b, a−b) is a ring isomorphism from
the group ring CZ2 to the ring C ⊕ C.

6.1.17. Let R be a commutative ring with identity element. Show
that the set of formal power series R[[x]], with coefficients in R is a
commutative ring.

6.2. Homomorphisms and Ideals
Certain concepts and constructions that were fundamental to our
study of groups are also important for the study of rings. In fact,
one could expect analogous concepts and constructions to play a role
for any reasonable algebraic structure.

We have already discussed the idea of a subring, which is analo-
gous to the idea of a subgroup. The next concept from group theory
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6.2. HOMOMORPHISMS AND IDEALS 249

that we might expect to play a fundamental role in ring theory is
the notion of a homomorphism.

Definition 6.2.1. A homomorphism ϕ : R → S of rings is a map
satisfying ϕ(x + y) = ϕ(x) + ϕ(y), and ϕ(xy) = ϕ(x)ϕ(y) for all
x, y ∈ R.

In particular, a ring homomorphism is a homomorphism for the
abelian group structure of R and S, so we know, for example, that
ϕ(−x) = −ϕ(x) and ϕ(0) = 0. Even if R and S both have an
identity element 1, it is not automatic that ϕ(1) = 1. If we want
to specify that this is so, we will call the homomorphism a unital
homomorphism.

Example 6.2.2. The map ϕ : Z → Zn defined by ϕ(a) = [a] =
a + nZ is a unital ring homomorphism. In fact, it follows from the
definition of the operations in Zn that ϕ(a+ b) = [a+ b] = [a]+ [b] =
ϕ(a) + ϕ(b), and, similarly, ϕ(ab) = [ab] = [a][b] = ϕ(a)ϕ(b) for
integers a and b.

Example 6.2.3. Let R be any ring with multiplicative identity 1.
The map k 7→ k 1 is a ring homomorphism from Z to R. The map
is just the usual group homomorphism from Z to the additive sub-
group 〈1〉 generated by 1; see Example 2.4.7. It is necessary to check
that 〈1〉 is closed under multiplication and that this map respects
multiplication; that is, (m 1)(n 1) = mn 1. This follows from two
observations:

First, for any a ∈ R and n ∈ Z, (n 1)a = n a. This was in-
cluded in the “elementary deductions” on pages 242–243, following
the definition of a ring.

Second, n (m a) = nm a; this is just the usual law of powers in a
cyclic group. (In a group written with multiplicative notation, this
law would be written as (bm)n = bmn.) See Exercise 2.2.8.

Putting these two observations together, we have (n 1)(m 1) =
n (m 1) = nm 1.

Warning: Such a homomorphism is not always injective. In
fact, the ring homomorphism k 7→ [k] = k[1] from Z to Zn is a
homomorphism of this sort that is not injective.

Example 6.2.4. Consider the ring C(R) of continuous real–valued
functions on R. Let S be any subset of R, for example, S = [0, 1].
The map f 7→ f|S that associates to each function its restriction to
S is a unital ring homomorphism from C(R) to C(S). Likewise, for
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250 6. RINGS

any t ∈ R the map f 7→ f(t) is a unital ring homomorphism from
C(R) to R.

Further examples of ring homomorphisms are given in the Exer-
cises.

Evaluation of polynomials
We are used to evaluating polynomials (say with real coefficients)

by substituting a number for the variable. For example, if p(x) =
x2 + 2, then p(5) = 52 + 2 = 27. When we do this, we are treating
polynomials as functions. The following proposition justifies this
practice.

Proposition 6.2.5. (Substitution principle) Suppose that R and
R′ are rings with multiplicative identity, with R commutative, and
ϕ : R → R′ is a unital ring homomorphism. For each a ∈ R′, there
is a unique unital ring homomorphism ϕa : R[x] → R′ such that
ϕa(r) = ϕ(r) for r ∈ R, and ϕa(x) = a. We have

ϕa(
∑

i

rix
i) =

∑

i

ϕ(ri)a
i.

Proof. If ϕa is to be a homomorphism, then it must satisfy

ϕa(
∑

i

rix
i) =

∑

i

ϕ(ri)a
i.

Therefore, we define ϕa by this formula. It is then straightforward
to check that ϕa is a ring homomorphism. n

There is also a multivariable version of the substitution princi-
ple, which formalizes evaluation of polynomials of several variables.
Suppose that R and R′ are rings with multiplicative identity, with
R commutative, and ϕ : R → R′ is a unital ring homomorphism.
Given an n–tuple aaa = (a1, a2, . . . , an) of elements in R′, we would
like to have a homomorphism from R[x1, . . . , xn] to R′ extending ϕ
and sending each xj to aj . This only makes sense, however, if the
elements aj are mutually commuting, that is, aiaj = ajai for every
i and j.
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Proposition 6.2.6. (Multivariable subsitution principle) Suppose
that R and R′ are rings with multiplicative identity, with R commu-
tative, and ϕ : R → R′ is a unital ring homomorphism. Given an n–
tuple aaa = (a1, a2, . . . , an) of mutually commuting elements in R′ there
is a unique unital ring homomorphism ϕaaa : R[x1, . . . , xn] −→ R′ such
that ϕaaa(r) = ϕ(r) for r ∈ R and ϕaaa(xj) = aj for 1 ≤ j ≤ n. We
have

ϕaaa(
∑

I

rIx
I) =

∑

I

ϕ(rI)aaa
I ,

where for a multi-index I = (i1, i2, . . . , in), aaaI denotes ai1
1 ai2

2 · · · ain
n .

Proof. The proof is essentially the same as that of the one variable
substitution principle. n

Corollary 6.2.7. (Evaluation of polynomials) Consider the ring
R[x] of polynomials over a commutative ring R with multiplica-
tive identity. For any a ∈ R, there is a unique homomorphisms
eva : R[x] → R with the property that eva(r) = r for r ∈ R and
eva(x) = a. We have

eva(
∑

i

rix
i) =

∑

i

ria
i.

We usually denote eva(p) by p(a).

Corollary 6.2.8. (Extensions of homomorphisms to polynomial
rings) If ψ : R → R′ is a unital homomorphism of commutative
rings with multiplicative identity, then there is a unique homomor-
phism ψ̃ : R[x] → R′[x] that extends ψ.

Proof. Apply Proposition 6.2.5 with the following data: Take ϕ :
R → R′[x] to be the composition of ψ : R → R′ with the inclusion
of R′ into R′[x], and let set a = x. By the proposition, there is a
unique homomorphism from R[x] to R′[x] extending ϕ, and sending
x to x. The extension is given by the formula

ψ̃(
∑

i

six
i) =

∑

i

ψ(si)x
i.

n

Example 6.2.9. Let V be a vector space over K and let T ∈
EndK(V ). Then

ϕT :
∑

i

λix
i 7→

∑

λiT
i
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252 6. RINGS

defines a homomorphism from K[x] to EndK(V ).
What does this mean, and how does it follow from Proposition

6.2.5?
EndK(V ) is a vector space over K as well as a ring. The product

of a scalar λ ∈ K and a linear map S ∈ EndK(V ) is defined by
(λS)(v) = λS(v) for v ∈ V . Let I denote the identity endomorphism
of V defined by I(v) = v. Then λI(v) = λv for v ∈ V .

The map ϕ : K −→ EndK(V ) given by λ 7→ λI is easily seen to
be a unital ring homomorphism from K to EndK(V ). By Proposition
6.2.5, there is a unique homomorphism ϕT : K[x] −→ EndK(V ) with
ϕT (x) = T and ϕT (λ) = λI. Moreover, ϕT (

∑

i λix
i) =

∑

i(λiI)T i =
∑

i λiT
i. We usually write p(T ) for ϕT (p).

Example 6.2.10. The map
∑

i kix
i 7→

∑

i[ki]x
i is a homomorphism

of Z[x] to Zn[x].

Example 6.2.11. Let R be a commutative ring with multiplicative
identity element. Then R[x, y] ∼= R[x][y]. To prove this, we use the
one– and two–variable substitution principles to produce homomor-
phisms from R[x, y] to R[x][y] and from R[x][y] to R[x, y].

We have injective homomorphisms ϕ1 : R −→ R[x] and ϕ2 :
R[x] −→ R[x][y]. The composition ϕ = ϕ2 ◦ ϕ1 is an injective ho-
momorphism from R into R[x]]y]. By the two variable substitution
principle, there is a unique homomorphism Φ : R[x, y] −→ R[x][y]
which extends ϕ and sends x 7→ x and y 7→ y.

Now we produce a map in the other direction. We have an in-
jective homomorphism ψ : R −→ R[x, y]. Applying the one variable
substitution principle once gives a homomorphism ψ1 : R[x] −→
R[x, y] extending ψ and sending x 7→ x. Applying the one vari-
able substitution principle a second time gives a homomorphism
Ψ : R[x][y] −→ R[x, y] extending ψ1 and mapping y 7→ y.

Now we have maps in both directions, and we have to check
that they are inverses of one another. The homomorphism Ψ ◦ Φ :
R[x, y] −→ R[x, y] is the identity on R and sends x 7→ x and y 7→ y.
By the uniqueness assertion in the two variable substitution princi-
ple, Ψ ◦ Φ is the identity homomorphism.

Likewise, Φ ◦ Ψ : R[x][y] −→ R[x][y] is the identity on R and
sends x 7→ x and y 7→ y. By the uniqueness assertion of the one
variable substitution principle, the restriction of Φ ◦Ψ to R[x] is the
injection ϕ2 of R[x] into R[x][y]. Applying the uniqueness assertion
one more time gives that Φ ◦ Ψ is the identity homomorphism.
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Ideals
The kernel of a ring homomorphism ϕ : R → S is the set of x ∈ R

such that ϕ(x) = 0. Observe that a ring homomorphism is injective
if, and only if, its kernel is {0}, because a ring homomorphism is, in
particular, a homomorphism of abelian groups, and the assertion is
valid for homomorphisms of abelian groups.

Again extrapolating from our experience with group theory, we
would expect the kernel of a ring homomorphism to be a special sort
of subring. The following definition captures the special properties
of the kernel of a homomorphism.

Definition 6.2.12. An ideal I in a ring R is a subgroup of (R, +)
satisfying xr, rx ∈ I for all x ∈ I and r ∈ R. A left ideal I of R is a
subgroup of (R, +) such that rx ∈ I whenever r ∈ R and x ∈ I. A
right ideal is defined similarly. Note that for commutative rings, all
of these notions coincide.

Proposition 6.2.13. If ϕ : R → S is a ring homomorphism, then
ker(ϕ) is an ideal of of R.

Proof. Since ϕ is a homomorphism of abelian groups, its kernel is
a subgroup. If r ∈ R and x ∈ ker(ϕ), then ϕ(rx) = ϕ(r)ϕ(x) =
ϕ(r)0 = 0. Hence rx ∈ ker(ϕ). Similarly, , xr ∈ ker(ϕ). n

Example 6.2.14. The kernel of the ring homomorphism Z → Zn

given by k 7→ [k] is nZ.

Example 6.2.15. Let R be any ring with multiplicative identity
element. Consider the unital ring homomorphism from Z to R de-
fined by k 7→ k 1. Note that if k 1 = 0, then for all a ∈ R, k a =
(k 1)a = 0 a = 0, by the “elementary deductions” on pages 242–243.
Therefore the kernel coincides with

{k ∈ Z : k a = 0 for all a ∈ R}

Since the kernel is a subgroup of Z, it is equal to nZ for a unique
n ≥ 0, according to Proposition 2.2.21. The integer n is called the
characteristic of R. The characteristic is 0 if the map k 7→ k 1 is
injective. Otherwise, the characteristic is the least positive integer
n such that n 1 = 0.

Warning: Suppose R is a commutative ring with multiplicative
identity and that R has positive characteristic n. It follows that
the polynomial ring R[x] also has characteristic n, because the mul-
tiplicative identity of R[x] coincides with that of R. In particular
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nx = 0 in R[x]. Thus the x of Z4[x] and the x of Z[x] are not the
same at all; the former satisfies 4x = 0, and the latter does not.

Example 6.2.16. Consider the situation of Corollary 6.2.8. That
is, ψ : R → R′ is a unital homomorphism of commutative rings
with multiplicative identity, and ψ̃ : R[x] → R′[x] is the extension

of ψ with ψ̃(x) = x. Then the kernel of ψ̃ is the collection of poly-

nomials with coefficients in ker(ψ). (Proof:
∑

i six
i ∈ ker(ψ̃) ⇐⇒

∑

i ψ(si)x
i = 0 ⇐⇒ ψ(si) = 0 for all i ⇐⇒ si ∈ ker(ψ) for all i.) In

particular, ψ̃ is injective if, and only if, ψ is injective.
For example, the kernel of the ring homomorphism Z[x] → Zn[x]

given by
∑

i kix
i 7→

∑

i[ki]x
i is the set of polynomials all of whose

coefficients are divisible by n.

Example 6.2.17. The kernel of the ring homomorphism K[x] → K
given by p 7→ p(a) is the set of all polynomials p having a as a root.

Example 6.2.18. The kernel of the ring homomorphism C(R) →
C(S) given by f 7→ f|S is the set of all continuous functions whose
restriction to S is zero.

Example 6.2.19. Let K be a field. Define a map ϕ from K[x] to
Fun(K, K), the ring of K–valued functions on K by ϕ(p)(a) = p(a).
(That is, ϕ(p) is the polynomial function on K corresponding to the
polynomial p.) Then ϕ is a ring homomorphism. The homomor-
phism property of ϕ follows from the homomorphism property of
p 7→ p(a) for a ∈ K. Thus ϕ(p + q)(a) = (p + q)(a) = p(a) + q(a) =
ϕ(p)(a)+ϕ(q)(a) = (ϕ(p)+ϕ(q))(a), and similarly for multiplication.

The kernel of ϕ is the set of polynomials p such that p(a) = 0 for
all a ∈ K. If K is infinite, then the kernel is {0}, since no nonzero
polynomial with coefficients in a field has infinitely many roots.

If K is finite, then ϕ is never injective. That is, there always
exist nonzero polynomials p ∈ K[x] such that p(a) = 0 for all a ∈ K.
Indeed, we need merely take p(x) =

∏

a∈K(x − a).

Definition 6.2.20. A ring R with no ideals other than {0} and R
itself is said to be simple.

Any field is a simple ring. You are asked to verify this in Exercise
6.2.10.

In Exercise 6.2.11, you are asked to show that the ring M of
n-by-n matrices with real entries is simple. This holds equally well
for matrix rings over any field.
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Proposition 6.2.21.

(a) Let {Iα} be any collection of ideals in a ring R. Then
⋂

α

Iα

is an ideal of R.
(b) Let In be an increasing sequence of ideals in a ring R. Then

⋃

n

In is an ideal of R.

Proof. Part (a) is an Exercise 6.2.17. For part (b), let x, y ∈ I =
⋃

n

In. Then there exist k, ℓ ∈ N such that x ∈ Ik and y ∈ Iℓ. If

n = max{k, ℓ}, then x ∈ Ik ⊆ In and y ∈ Iℓ ⊆ In. Therefore,
x + y ∈ In ⊆ I. If x ∈ I and r ∈ R, then there exists n ∈ N such
that x ∈ In. Then rx, xr ∈ In ⊆ I. Thus I is an ideal. n

The analogues of parts (a) and (b) of the Proposition 6.2.21 hold
for left and right ideals as well.

Proposition 6.2.22.

(a) Let I and J be two ideals in a ring R. Then

IJ = {a1b1 + a2b2 + · · · + asbs : s ≥ 1, ai ∈ I, bi ∈ J}

is an ideal in R, and IJ ⊆ I ∩ J .
(b) Let I and J be two ideals in a ring R. Then I +J = {a+b :

a ∈ I and b ∈ J} is an ideal in R.

Proof. Exercises 6.2.18 and 6.2.19. n

Ideals generated by subsets
Next we investigate ideals, or one–sided ideals, generated by a

subset of a ring.

Proposition 6.2.23. Let R be a ring and S a subset of R. Let 〈S〉
denote the additive subgroup of R generated by S.

(a) Define

RS = {r1s1 + r2s2 + · · · + rnsn : n ∈ N, ri ∈ R, si ∈ S}.

Then RS is a left ideal of R.
(b) 〈S〉 + RS is the smallest left ideal of R containing S, and

is equal to the intersection of all left ideals of R containing
S.

(c) In case R has an identity element, RS = 〈S〉 + RS.
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Proof. It is straightforward to check that RS is a left ideal. 〈S〉+RS
is a sum of subgroups R, so it is a subgroup. Moreover, for r ∈ R,
we have r〈S〉 ⊆ RS. It follows from this that 〈S〉+RS is a left ideal.
If J is any left ideal of R containing S, then J ⊇ 〈S〉, because J is
a subgroup of R. Since J is a left ideal, J ⊇ RS as well. Therefore
J ⊇ 〈S〉 + RS. This shows that 〈S〉 + RS is the smallest left ideal
containing S. The intersection of all left ideals of R containing S is
also the smallest left ideal of R containing S, so (b) follows. Finally,
if R has an identity element, then S ⊆ RS, so 〈S〉 ⊆ RS, which
implies (c). n

Definition 6.2.24. The smallest left ideal containing a subset S is
called the left ideal generated by S. The smallest left ideal containing
a single element x ∈ R is called the principal left ideal generated by
x.

When R has an identity element the principal left ideal generated
by x is just Rx = {rx : r ∈ R}. See Exercise 6.2.8

Proposition 6.2.23 and Definition 6.2.24 have evident analogues
for right ideals. The following is the analogue for two-sided ideals:

Proposition 6.2.25. Let R be a ring and S a subset of R. Let 〈S〉
denote the additive subgroup of R genertated by S.

(a) Define

RSR = {a1s1b1 + a2s2b2 + · · · + ansnbn : n ∈ N, an, bn ∈ R}.

Then RSR is a two-sided ideal.
(b) 〈S〉 + RSR is the smallest ideal of R containing S, and is

equal to the interesection of all ideals of R containing S
(c) If R has an identity element , then 〈S〉 + RSR = RSR.

Proof. Essentially the same as the proof of Proposition 6.2.23. n

Definition 6.2.26. The smallest ideal containing a subset S is called
the ideal generated by S, and is denoted by (S). The smallest ideal
containing a single element x ∈ R is called the principal ideal gener-
ated by x and is denoted by (x).

When R has an identity element, the principal ideal generated
by x ∈ R is

(x) = {a1xb1 + a2xb2 + · · · + anxbn : n ∈ N, ai, bi ∈ R}.
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See Exercise 6.2.9. When R is commutative with identity, ideals and
left ideals coincide, so

(x) = Rx = {rx : r ∈ R}.

The ideal generated by S is, in general, larger than the subring
generated by S; for example, the subring generated by the identity
element consists of integer multiples of the identity, but the ideal
generated by the identity element is all of R.

Ideals in Z and in K[x]

In the ring of integers, and in the ring K[x] of polynomials in
one variable over a field, every ideal is principal:

Proposition 6.2.27.

(a) For a subset S ⊆ Z, the following are equivalent:
(i) S is a subgroup of Z.
(ii) S is a subring of Z.
(iii) S is an ideal of Z.

(b) Every ideal in the ring of integers is principal.
(c) Every ideal in K[x], where K is a field, is principal.

Proof. Clearly an ideal is always a subring, and a subring is always
a subgroup. If S is a nonzero subgroup of Z, then S = Zd, where
d is the least positive element of S, according to Proposition 2.2.21.
If S = {0}, then S = Z0. In either case, S is a principal ideal of Z.
This proves (a) and (b).

The proof of (c) is similar to that of Proposition 2.2.21. The
zero ideal of K[x] is clearly principal. Let J be a nonzero ideal,
and let f ∈ J be a nonzero element of least degree in J . If g ∈ J ,
write g = qf + r, where q ∈ K[x], and deg(r) < deg(f). Then
r = g− qf ∈ J . Since deg(r) < deg(f) and f was a nonzero element
of least degree in J , it follows that r = 0. Thus g = qf ∈ K[x]f .
Since g was an arbitrary element of J , J = K[x]f . n

Direct Sums
Consider a direct sum of rings R = R1 ⊕ · · · ⊕ Rn. For each i,

set R̃i = {0} ⊕ · · · ⊕ {0} ⊕Ri ⊕ {0} ⊕ · · · ⊕ {0}. Then R̃i is an ideal
of R.

How can we recognize that a ring R is isomorphic to the direct
sum of several subrings A1, A2, . . . , An? On the one hand, according
to the previous example, the component subrings must actually be
ideals. On the other hand, the ring must be isomorphic to the direct
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product of the Ai, regarded as abelian groups. These conditions
suffice.

Proposition 6.2.28. Let R be a ring with ideals A1, . . . As such that
R = A1 + · · · + As. Then the following conditions are equivalent:

(a) (a1, . . . , as) 7→ a1 + · · · + as is a group isomorphism of
A1 × · · · × As onto R.

(b) (a1, . . . , as) 7→ a1 + · · · + as is a ring isomorphism of A1 ⊕
· · · ⊕ As onto R.

(c) Each element x ∈ R can be expressed as a sum x = a1 +
· · · + as, with ai ∈ Ai for all i, in exactly one way.

(d) If 0 = a1 + · · · + as, with ai ∈ Ai for all i, then ai = 0 for
all i.

Proof. The equivalence of (a), (c), and (d) is by Proposition 3.3.1.
Clearly (b) implies (a). Let us assume (a) and show that the map

(a1, . . . , as) 7→ a1 + · · · + as

is actually a ring isomorphism. We have AiAj ⊆ Ai ∩ Aj = {0} if
i 6= j (using condition (d)). Therefore,

(a1 + · · · + as)(b1 + · · · + bs) = a1b1 + · · · + asbs,

whenever ai, bi ∈ Ai for all i. It follows that the map is a ring
isomorphism. n

Exercises 6.2

6.2.1. Show that A 7→

[

A 0
0 A

]

and A 7→

[

A 0
0 0

]

are homomor-

phisms of the ring of 2-by-2 matrices into the ring of 4-by-4 matrices.
The former is unital, but the latter is not.

6.2.2. Define a map ϕ from the ring R[x] of polynomials with real
coefficients into the ring M of 3-by-3 matrices by

ϕ(
∑

aix
i) =





a0 a1 a2

0 a0 a1

0 0 a0



 .

Show that ϕ is a unital ring homomorphism. What is the kernel of
this homomorphism?

6.2.3. If ϕ : R → S is a ring homomorphism and R has an identity
element 1, show that e = ϕ(1) satisfies e2 = e and ex = xe = exe
for all x ∈ ϕ(R).
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6.2.4. Show that if ϕ : R → S is a ring homomorphism, then ϕ(R)
is a subring of S.

6.2.5. Show that if ϕ : R → S and ψ : S → T are ring homomor-
phisms, then the composition ψ ◦ ϕ is a ring homomorphism.

6.2.6. Let S be a subset of a set X. Let R be the ring of real–valued
functions on X, and let I be the set of real–valued functions on X
whose restriction to S is zero. Show that I is an ideal in R.

6.2.7. Let R be the ring of 3-by-3 upper triangular matrices and I
be the set of upper triangular matrices that are zero on the diagonal.
Show that I is an ideal in R.

6.2.8. Show that if R is a ring with identity element and x ∈ R,
then Rx = {rx : r ∈ R} is the principal left ideal generated by x
Similarly, xR = {xr : r ∈ R} is the principal right ideal generated
by x.

6.2.9. Show that if R is a ring with identity, then the principal ideal
generated by x ∈ R is

(x) = {a1xb1 + a2xb2 + · · · + anxbn : n ∈ N, ai, bi ∈ R}.

6.2.10. Show that any field is a simple ring.

6.2.11. Show that the ring M of n-by-n matrices over R has no
ideals other than 0 and M . Conclude that any ring homomorphism
ϕ : M → S is either identically zero or is injective. Hint: To begin
with, work in the 2-by-2 or 3-by-3 case; when you have done these
cases, you will understand the general case as well. Let I be a
nonzero ideal, and let x ∈ I be a nonzero element. Introduce the
matrix units Eij , which are matrices with a 1 in the (i, j) position and
zeros elsewhere. Observe that the set of Eij is a basis for the linear
space of matrices. Show that EijEkl = δjkEil. Note that the identity
E matrix satisfies E =

∑n
i=1 Eii, and write x = ExE =

∑

i,j EiixEjj .
Conclude that y = EiixEjj 6= 0 for some pair (i, j). Now, since y
is a matrix, it is possible to write y =

∑

r,s yrsEr,s. Conclude that
y = yi,jEi,j , and yi,j 6= 0, and that, therefore, Eij ∈ I. Now use the
multiplication rules for the matrix units to conclude that Ers ∈ I for
all (r, s), and hence I = M .

6.2.12. An element e of a ring is called an idempotent if e2 = e.
What are the idempotents in the ring of real–valued functions on a
set X? What are the idempotents in the ring of continuous real–
valued functions on [0, 1]?
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6.2.13. Find a nontrivial idempotent (i.e., an idempotent different
from 0 or 1) in the ring of 2-by-2 matrices with real entries.

6.2.14. Let e be a nontrivial idempotent in a commutative ring R
with identity. Show that R ∼= Re ⊕ R(1 − e) as rings.

6.2.15. Find a nontrivial idempotent e in the ring Z35. Show that
the decomposition Z35

∼= Z5 ⊕ Z7 corresponds to the decomposition
Z35 = Z35e ⊕ Z35(1 − e).

6.2.16. Show that a nonzero homomorphism of a simple ring is in-
jective. In particular, a nonzero homomorphism of a field is injective.

6.2.17. Show that the intersection of any family of ideals in a ring
is an ideal. Show that the ideal generated by a subset S of a ring R
is the intersection of all ideals J of R such that S ⊆ J ⊆ R.

6.2.18. Let I and J be two ideals in a ring R. Show that

I + J = {a + b : a ∈ I and b ∈ J}

is an ideal in R.

6.2.19. Let I and J be two ideals in a ring R. Show that

IJ = {a1b1 + a2b2 + · · · + asbs : s ≥ 1, ai ∈ I, bi ∈ J}

is an ideal in R, and IJ ⊆ I ∩ J .

6.2.20. Let R be a ring without identity and a ∈ R. Show that the
ideal generated by a in R is equal to Za + Ra + aR + RaR, where
Za is the abelian subgroup generated by a, Ra = {ra : r ∈ R}, and
so on. Show that if R is commutative, then the ideal generated by
a is Za + Ra.

6.2.21. Let M be an ideal in a ring R with identity, and a ∈ R \M .
Show that M + RaR is the ideal generated by M and a. How must
this statement be altered if R does not have an identity?

6.2.22. Let R be a ring without identity. This exercise shows how
R can be imbedded as an ideal in a ring with identity.

(a) Let R̃ = Z × R, as an abelian group. Give R̃ the multipli-
cation

(n, r)(m, s) = (nm, ns + mr + rs).

Show that this makes R̃ into a ring with multiplicative iden-
tity (1, 0).

(b) Show that r 7→ (0, r) is a ring isomorphism of R into R̃

with image {0} × R. Show that {0} × R is an ideal in R̃.
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(c) Show that if ϕ : R −→ S is a homomorphism of R into a
ring S with multiplicative identity 1, then there is a unique
homomorphism ϕ̃ : R̃ −→ S such that ϕ̃((0, r)) = ϕ(r) and
ϕ̃((1, 0)) = 1.

6.3. Quotient Rings
In Section 2.7, it was shown that given a group G and a normal
subgroup N , we can construct a quotient group G/N and a natural
homomorphism from G onto G/N . The program of Section 2.7 can
be carried out more or less verbatim with rings and ideals in place
of groups and normal subgroups:

For a ring R and an ideal I, we can form the quotient group
R/I, whose elements are cosets a + I of I in R. The additive group
operation in R/I is (a+I)+(b+I) = (a+b)+I. Now attempt to define
a multiplication in R/I in the obvious way: (a+I)(b+I) = (ab+I).
We have to check that this this is well defined. But this follows from
the closure of I under multiplication by elements of R; namely, if
a + I = a′ + I and b + I = b′ + I, then

(ab − a′b′) = a(b − b′) + (a − a′)b′ ∈ aI + Ib ⊆ I.

Thus, ab+I = a′b′+I, and the multiplication in R/I is well defined.

Theorem 6.3.1. If I is an ideal in a ring R, then R/I has the
structure of a ring, and the quotient map a 7→ a + I is a surjective
ring homomorphism from R to R/I with kernel equal to I. If R has
a multiplicative identity, then so does R/I, and the quotient map is
unital.

Proof. Once we have checked that the multiplication in R/I is well
defined, it is straightforward to check the ring axioms. Let us include
one verification for the sake of illustration. Let a, b, c ∈ R. Then

(a + I)((b + I) + (c + I)) = (a + I)(b + c + I) = a(b + c) + I

= ab + ac + I = (ab + I) + (ac + I)

= (a + I)(b + I) + (a + I)(c + I).

We know that the quotient map a 7→ a + I is a surjective homo-
morphism of abelian groups with kernel I. It follows immediately
from the definition of the product in R/I that the map also respects
multiplication:

ab 7→ ab + I = (a + I)(b + I)

Finally, if 1 is the multiplicative identity in R, then 1 + I is the
multiplicative identity in R/I. n
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Example 6.3.2. The ring Zn is the quotient of the ring Z by the
principal ideal nZ. The homomorphism a 7→ [a] = a + nZ is the
quotient homomorphism.

Example 6.3.3. For K a field, any ideal in K[x] is of the form
(f) = fK[x] for some polynomial f according to Proposition 6.2.27.
For any g(x) ∈ K[x], there exist polynomials q, r such that g(x) =
q(x)f(x)+ r(x), and deg(r) < deg(f). Thus g(x)+ (f) = r(x)+ (f).
In other words, K[x]/(f) = {r(x) + (f) : deg(r) < deg(f)}. The
multiplication in K[x]/(f) is as follows: Given polynomials r(x) and
s(x) each of degree less than the degree of f ,the product (r(x) +
(f))(s(x) + (f)) = r(x)s(x) + (f) = a(x) + (f), where a(x) is the
remainder upon division of r(x)s(x) by f(x).

Let’s look at the particular example K = R and f(x) = x2 + 1.
Then R[x]/(f) consists of cosets a + bx + (f) represented by linear
polynomials. Furthermore, we have the computational rule

x2 + (f) = x2 + 1 − 1 + (f) = −1 + (f).

Thus

(a + bx + (f))(a′ + b′x + (f)) = (aa′ − bb′) + (ab′ + a′b)x + (f).

All of the homomorphism theorems for groups, which were pre-
sented in Section 2.7, have analogues for rings. The basic homomor-
phism theorem for rings is the following.

Theorem 6.3.4. (Homomorphism theorem for rings). Let ϕ : R −→
S be a surjective homomorphism of rings with kernel I. Let π : R −→
R/I be the quotient homomorphism. There is a ring isomorphism
ϕ̃ : R/I −→ S satisfying ϕ̃ ◦ π = ϕ. (See the following diagram.)

R
ϕ

qqqqqqqqqq
qqqqqqqq
qqqqqqqqqqqqqqqqqq S

π

qqqqqqqqqq
qqqqqqqq

qqqqqqqqqq
qqqqqqqq

�
�

�
�

�
�

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

∼= ϕ̃

R/I

Proof. The homomorphism theorem for groups (Theorem 2.7.6)
gives us an isomorphism of abelian groups ϕ̃ : R/I → S satisfying
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ϕ̃◦π = ϕ. We have only to verify that ϕ̃ also respects multiplication.
But this follows at once from the definition of the product on R/I:

ϕ̃(a + I)(b + I) = ϕ̃(ab + I)

= ϕ(ab) = ϕ(a)ϕ(b) = ϕ̃(a + I)ϕ̃(b + I).

n

Example 6.3.5. Define a homomorphism ϕ : R[x] → C by eval-
uation of polynomials at i ∈ C, ϕ(g(x)) = g(i). For example,
ϕ(x3 − 1) = i3 − 1 = −i − 1. This homomorphism is surjective
because ϕ(a + bx) = a + bi. The kernel of ϕ consists of all polyno-
mials g such that g(i) = 0. The kernel contains at least the ideal
(x2 + 1) = (x2 + 1)R[x] because i2 + 1 = 0. On the other hand, if
g ∈ ker(ϕ), write g(x) = (x2 + 1)q(x) + (a + bx); evaluating at i,
we get 0 = a + bi, which is possible only if a = b = 0. Thus g is a
multiple of x2 +1. That is ker(ϕ) = (x2 +1). By the homomorphism
theorem for rings, R[x]/(x2 + 1) ∼= C as rings. In particular, since C

is a field, R[x]/(x2 + 1) is a field. Note that we have already calcu-
lated explicitly in Example 6.3.3 that multiplication in R[x]/(x2 +1)
satisfies the same rule as multiplication in C.

Example 6.3.6. Let R be a ring with identity containing ideals B1,
. . . , Bs. Let B = ∩iBi. Suppose that Bi+Bj = R for all i 6= j. Then
R/B ∼= R/B1 ⊕ · · · ⊕ R/Bs. In fact, ϕ : r 7→ (r + B1, . . . , r + Bs)
is a homomorphism of R into R/B1 ⊕ · · · ⊕ R/Bs with kernel B, so
R/B ∼= ϕ(R). The problem is to show that ϕ is surjective. Fix i and
for each j 6= i find r′j ∈ Bi and rj ∈ Bj such that r′j+rj = 1. Consider

the product of all the (r′j + rj) (in any order). When the product
is expanded, all the summands except for one contain at least one
factor r′j in the ideal Bi, so all of these summands are in Bi. The
remaining summand is the product of all of the rj ∈ Bj , so it lies in
∩j 6=iBj . Thus we get 1 = ai + bi, where bi ∈ Bi and ai ∈ ∩j 6=iBj .
The image of ai in R/Bj is zero for j 6= i, but ai + Bi = 1 + Bi.
Now if (r1, . . . , rs) is an arbitrary sequence of elements of R, then
ϕ(r1a1 + r2a2 + · · ·+ rsas) = (r1 + B1, r2 + B2, . . . , rs + Bs), so ϕ is
surjective.

Proposition 6.3.7. (Correspondence theorem for rings) Let ϕ :
R −→ R be a ring homomorphism of R onto R, and let J denote
its kernel. Under the bijection B 7→ ϕ−1(B) between subgroups of
R and subgroups of R containing J , subrings correspond to subrings
and ideals to ideals.
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Proof. According to Proposition 2.7.12, B 7→ ϕ−1(B) is a bijection
between the subgroups of R and the subgroups of R containing J .
We leave it as an exercise (Exercise 6.3.3) to show that this bijection
carries subrings to subrings and ideals to ideals. n

Each of the next three results is an analogue for rings of a ho-
momorphism theorem for groups that was presented in Section 2.7.
Each can be proved either by using the corresponding result for
groups and verifying that the maps respect multiplication, or by
adapting the proof of the proposition for groups.

Proposition 6.3.8. Let ϕ : R −→ R be a surjective ring homomor-
phism with kernel J . Let Ī be an ideal of R and let I = ϕ−1(Ī).
Then x + I 7→ ϕ(x) + Ī is a ring isomorphism of R/I onto R/Ī.
Equivalently,

(R/J)/(I/J) ∼= R/I

as rings.

Proof. By Proposition 2.7.13, the map x + I 7→ ϕ(x) + Ī is a group
isomorphism from (R/I,+) to (R/I,+). But the map also respects
multiplication, as

(x + I)(y + I) = xy + I 7→ ϕ(xy) + Ī = (ϕ(x) + Ī)(ϕ(y) + Ī).

We can identify R with R/J by the homomorphism theorem for
rings, and this identification carries Ī to the image of I in R/J ,
namely I/J . Therefore,

(R/J)/(I/J) ∼= R/Ī ∼= R/I.

n

Proposition 6.3.9. Let ϕ : R → R be a surjective homomorphism of
rings with kernel I. Let J ⊆ I be an ideal of R, and let π : R → R/J
denote the quotient map. Then there is a surjective homomorphism
ϕ̃ : R/J → R such that ϕ̃ ◦ π = ϕ. (See the following diagram.) The
kernel of ϕ̃ is I/J ⊆ R/J .

R
ϕ

qqqqqqqqqq
qqqqqqqq
qqqqqqqqqqqqqqqqqq R

π

qqqqqqqqqq
qqqqqqqq

qqqqqqqqqq
qqqqqqqq

�
�

�
�

�
�

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

ϕ̃

R/J
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Proof. By Proposition 2.7.14, ϕ̃ : x + J 7→ ϕ(x) defines a group
homomorphism from R/J to R with kernel I/J . We only have to
check that the map respects multiplication. This follows from the
computation:

ϕ̃((x + J)(y + J)) = ϕ̃(xy + J) = ϕ(xy)

= ϕ(x)ϕ(y) = ϕ̃(x + I)ϕ̃(y + I).

n

Proposition 6.3.10. Let ϕ : R −→ R be a surjective homomor-
phism of rings with kernel I. Let A be a subring of R. Then
ϕ−1(ϕ(A)) = A + I = {a + r : a ∈ A and r ∈ I}. A + I is a
subring of R containing I, and

(A + I)/I ∼= ϕ(A) ∼= A/(A ∩ I).

Proof. Exercise 6.3.5. n

An ideal M in a ring R is called proper if M 6= R and M 6= {0}.

Definition 6.3.11. An ideal M in a ring R is called maximal if
M 6= R there are no ideals strictly between M and R; that is, the
only ideals containing M are M and R.

Recall that a ring is called simple if it has no ideals other than
the trivial ideal {0} and the whole ring; so a nonzero ring is simple
precisely when {0} is a maximal ideal.

Proposition 6.3.12. A proper ideal M in R is maximal if, and only
if, R/M is simple.

Proof. Exercise 6.3.6. n

Proposition 6.3.13. A (nonzero) commutative ring R with multi-
plicative identity is a field if, and only if, R is simple.

Proof. Suppose R is simple and x ∈ R is a nonzero element. The
ideal Rx is nonzero since x = 1x ∈ Rx; because R is simple, R = Rx.
Hence there is a y ∈ R such that 1 = yx. Conversely, suppose R is a
field and M is a nonzero ideal. Since M contains a nonzero element
x, it also contains r = rx−1x for any r ∈ R; that is, M = R. n
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Corollary 6.3.14. If M is a proper ideal in a commutative ring R
with 1, then R/M is a field if, and only if, M is maximal.

Proof. This follows from Propositions 6.3.12 and 6.3.13. n

Exercises 6.3
6.3.1. Work out the rule of computation in the ring R[x]/(f), where
f(x) = x2 − 1. Note that the quotient ring consists of elements
a + bx + (f). Compare Example 6.3.3.

6.3.2. Work out the rule of computation in the ring R[x]/(f), where
f(x) = x3 − 1. Note that the quotient ring consists of elements
a + bx + cx2 + (f). Compare Example 6.3.3.

6.3.3. Prove Proposition 6.3.7.

6.3.4. Give another proof of Proposition 6.3.8, by adapting the proof
of Proposition 2.7.13, rather than appealing to the result of Propo-
sition 2.7.13.

6.3.5. Prove Proposition 6.3.10, following the pattern of the proof
of Proposition 2.7.18.

6.3.6. Prove that an ideal M in R is maximal if, and only if, R/M
is simple.

6.3.7.

(a) Show that nZ is maximal ideal in Z if, and only if, ±n is a
prime.

(b) Show that (f) = fK[x] is a maximal ideal in K[x] if, and
only if, f is irreducible.

(c) Conclude that Zn = Z/nZ is a field if, and only if, ±n
is prime, and that K[x]/(f) is a field if, and only if, f is
irreducible.

6.3.8. If J is an ideal of the ring R, show that J [x] is an ideal in
R[x] and furthermore R[x]/J [x] ∼= (R/J)[x]. Hint: Find a natural
homomorphism from R[x] onto (R/J)[x] with kernel J [x].

6.3.9. For any ring R, and any natural number n, we can define the
matrix ring Matn(R) consisting of n-by-n matrices with entries in
R. If J is an ideal of R, show that Matn(J) is an ideal in Matn(R)
and furthermore Matn(R)/Matn(J) ∼= Matn(R/J). Hint: Find a
natural homomorphism from Matn(R) onto Matn(R/J) with kernel
Matn(J).
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6.3.10. Let R be a commutative ring. Show that R[x]/xR[x] ∼= R.

6.3.11. This exercise gives a version of the Chinese remainder the-
orem.

(a) Let R be a ring, P and Q ideals in R, and suppose that
P ∩ Q = {0}, and P + Q = R. Show that the map x 7→
(x + P, x + Q) is an isomorphism of R onto R/P ⊕ R/Q.
Hint: Injectivity is clear. For surjectivity, show that for
each a, b ∈ R, there exist x ∈ R, p ∈ P , and q ∈ Q such
that x + p = a, and x + q = b.

(b) More generally, if P + Q = R, show that R/(P ∩ Q) ∼=
R/P ⊕ R/Q.

6.3.12.

(a) Show that integers m and n are relatively prime if, and only
if, mZ+nZ = Z if, and only if, mZ∩nZ = mnZ. Conclude
that if m and n are relatively prime, then Zmn

∼= Zm ⊕ Zn

as rings.
(b) State and prove a generalization of this result for the ring

of polynomials K[x] over a field K.

6.4. Integral Domains
Definition 6.4.1. An integral domain is a commutative ring with
identity element 1 in which the product of any two nonzero elements
is nonzero.

You may think at first that the product of nonzero elements in
a ring is always nonzero, but you already know of examples where
this is not the case! Let R be the ring of real–valued functions on a
set X and let A be a proper subset of X. Let f be the characteristic
function of A, that is, the function satisfying f(a) = 1 if a ∈ A and
f(x) = 0 if x ∈ X \ A. Then f and 1 − f are nonzero elements of R
whose product is zero.

For another example, let x be the 2-by-2 matrix

[

0 1
0 0

]

. Com-

pute that x 6= 0 but x2 = 0. (An element n in a ring is said to be
nilpotent if nk = 0 for some k.)

Example 6.4.2.

(a) The ring of integers Z is an integral domain.
(b) Any field is an integral domain.
(c) If R is an integral domain, then R[x] is an integral domain.

In particular, K[x] is an integral domain for any field K.


