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M.6. Rational canonical form

In this section we apply the theory of finitely generated mod-
ules of a principal ideal domain to study the structure of a linear
transformation of a finite dimensional vector space.

If T is a linear transformation of a finite dimensional vector space
V over a field K, then V has a K[z]-module structure determined
by f(z)v = f(T)v for f(z) € K[z] and v € V. Since V is finitely
generated as a K—module, it is finitely generated as a K[z]-module.
Moreover, V is a torsion module over Klz]. In fact, if V is n—
dimensional, then Endy (V) is an n?-dimensional vector space over
K, so the n? + 1 linear transformations id,T,7T2,... ,T"2 are not
linearly independent. Therefore, there exist ag,...,a,2 such that

;‘io a;T7 = 0 in Endg (V). But this means that the polynomial
?io ajxj is in the annihilator of V' in K|[x].

A K|z]-submodule of V' is a vector subspace V; that is invariant
under 7', Tv € Vj for all v € V4. If (z1,...,2x,) is an ordered basis
of V such that the first k basis elements form a basis of V7, then the
matrix of T with respect to this basis has the block triangular form:

A B

0 C|-°
If V.= Vi & V5, where both V; and V5 are invariant under 7', and
(z1,...,2y) is an ordered basis of V' such that the first k& elements

constitute a basis of V7 and the remaining elements constitute a basis
of V5, then the matrix of T" with respect to this basis has the block

diagonal form:
A 0
0o C|°

If V' is the direct sum of several T—invariant subspaces,
V=W& >V,

then with respect to an ordered basis that is the union of bases of
the subspaces V;, the matrix of T" has the block diagonal form:

A, 0 -+ 0
0 Ay --- 0
: : 0
o o0 --- A

In this situation, let T; denote the restriction of T' to the invariant
subspace subspace V;. In the block diagonal matrix above, A; is the
matrix of T; with respect to some basis of V;. We write

(T> V) = (T17 Vl) D---D (T87 Vs)a
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or just
T=T1®--®T;s

to indicate that V is the direct sum of T—invariant subspaces and
that T; is the restriction of T' to the invariant subspace V;.

A strategy for understanding the structure of a linear transfor-
mation 71" is to find such a direct sum decomposition so that the
component transformations 7; have a simple form.

Because V' is a finitely generated torsion module over the Eu-
clidean domain K{z], according to Theorem M.5.2, (T, V') has a di-
rect sum decomposition

(T7 V) — (Tl)Vl) ®©---D (TSa ‘/S)u
where V; is a cyclic K[z]-module
Vi = Klz]/(ai(x)),
deg(ai(z)) > 1 (that is, a;(x) is not zero and not a unit) and a;(x)
divides a;(z) if ¢ < j. Moreover, if we insist that the a;(z) are monic,
then they are unique. We call the polynomials a;(x) the invariant
factors of T

To understand the structure of T', it suffices to understand how
T; acts on the cyclic K[z]-module V;.

Definition M.6.1. The companion matriz of a monic polynomial
a(z) = 2%+ ag_17%7 + - + aqx + g is the matrix

0 0 0 -~ 0 —ag |
10 0 --- 0 -
o1 0 --- O —Qo
0 0 O 0 —ag-o
0 0 0 I —ag-1]

We denote the companion matrix of a(x) by C,.

Lemma M.6.2. Let T be a linear transformation on a finite dimen-
stonal vector space V over K and let

a(x) = ¢+ ag_12¥ '+ +az+tag € K|x].
The following conditions are equivalent:

(a) Vs a cyclic K[x]-module with annihilator ideal generated
by a(x).
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(b)  V has a vector vy such that V. = span({T7vg : j > 0})
and a(x) is the monic polynomial of least degree such that
a(T)vy = 0.

(¢) V =K[z]/(a(x)) as K|[x] modules.

(d) 'V has a basis with respect to which the matriz of T is the
companion matriz of a(z).

Proof. We already know the equivalence of (a)-(c), at least implic-
itly, but let us nevertheless prove the equivalence of all four con-
ditions. V is a cyclic module with generator wvg, if, and only if,
V = Klz|vg = {f(T)vo : f(z) € K[x]} = span{T7v : j > 0}. More-
over, ann(V') = ann(vp) is the principal ideal generated by its monic
element of least degree, so ann(V') = (a(x)) if, and only if, a(x) is the
polynomial of least degree such that a(T)vy = 0. Thus conditions
(a) and (b) are equivalent.

If (b) holds, then f(x) — f(x)vg is a surjective module homomor-
phism from K[z]| to V, and a(z) is an element of least degree in the
kernel of this map, so generates the kernel. Hence V = Klz|/(a(z))
by the homomorphism theorem for modules.

In proving that (c) implies (d), we may assume that V is the
K[z]-module K|[z]|/(a(x)), and that T is the linear transformation

f(x) +(a(x)) = 2f(z) + (a(z)).
Write J = (a(z)) for convenience. I claim that
B=0+Jax+J,...,.27 +)

is a basis of K[x]/(a(x)) over K. In fact, for any f(x) € K[z], we
can write f(z) = g(z)a(z) + r(x) where r(z) = 0 or deg(r(z)) < d.
Then f(z) + J = r(z) + J, which means that B spans K|z]|/(a(x))
over K. If B is not linearly independent, then there exists a nonzero
polynomial 7(z) of degree less than d such that r(z) € J; but this is
impossible since J = (a(x)). The matrix of 7" with respect to B is
clearly the companion matrix of a(z), as T'(2? + J) = 2/ + J for
j<d—2and T(z ' +J) = 294+ = —(ag+arz+---+ag_129 1)+ J.

Finally, if V" has a basis B = (vg, ..., v4_1) with respect to which
the matrix of 7" is the companion matrix of a(x), then v; = TYv, for
j<d—1and Ty = Tvg_, = —( ?:_01 av;) = —( ?:_01 a;THvy.
Therefore, V' is cyclic with generator vy and a(z) € ann(vg). No
polynomial of degree less than d annihilates vg, since {TVvg : j <
d — 1} = B is linearly independent. This shows that condition (d)
implies (b). |
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Definition M.6.3. Say that a matrix is in rational canonical form
if it is block diagonal

Co, O 0
0 Cq, 0
: : °c 01’
0 0 - O,

where Cy, is the companion matrix of a monic polynomial a;(z) of
degree > 1, and a;(x) divides a;(z) for ¢ < j

Theorem M.6.4. (Rational canonical form) Let T be a linear trans-
formation of a finite dimensional vector space V over a field K.
(a)  There is an ordered basis of V with respect to which the
matriz of T is in rational canonical form.
(b)  Only one matriz in rational canonical form appears as the
matriz of T with respect to some ordered basis of V.

Proof. According to Theorem M.5.2, (T,V) has a direct sum de-
composition

(T7 V) = (T17 Vl) S---D (Tsa ‘/8)7
where V; is a cyclic K[z]-module

Vi = Klz]/(ai(x)),

and the polynomials a;(z) are the invariant factors of 7. By Lemma
M.6.2, there is a basis of V; such that the matrix of T; with respect
to this basis is the companion matrix of a;(x). Therefore, there is
a basis of V' with respect to which the matrix of T is in rational
canonical form.

Now suppose that the matrix A of T" with respect to some basis
is in rational canonical form, with blocks Cy, for 1 < i <s. It follows
that (7', V) has a direct sum decomposition

(T7 V) = (TI, Vl) D---D (Tsa Vs)a

where the matrix of 7; with respect to some basis of V; is C,,. By
Lemma M.6.2, V; = K|[z]/(ai(z)) as K|[zx]-modules. Thus

V= Klal/(ai(z)) & - @ Kfz]/(as(7)).

By the uniqueness of the invariant factor decomposition of V' (The-
orem xxx), the polynomials a;(z) are the invariant factors of the
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K[z]-module V, that is, the invariant factors of 7. Thus the poly-
nomials a;(x), and therefore the matrix A is uniquely determined by
T. [ |

The matrix in rational canonical form whose blocks are the com-
panion matrices of the invariant factors of T is called the rational
canonical form of T.

Recall that two linear transformations 77 and 75 in Endg (V') are
said to be similar if there is an invertible U € Endg (V') such that
Ty = UT1U~!. Likewise two matrices A; and Ay are similar if there
is an invertible matrix S such that As = SA4;57 1.

According to the following result, the rational canonical form is
a complete invariant for similarity of linear transformations. We will
see later that the rational canonical form is computable, so we can
actually check whether two transformations are similar by computa-
tions.

Proposition M.6.5. Two linear transformations 11 and T of a
finite dimensional vector space V are similar if, and only if, they
have the same rational canonical form.

Proof. The rational canonical form of a linear transformation 7" de-
termines, and is determined by, the invariant factor decomposition
of the K[x]-module corresponding to 7', as is clear from the proof
of Theorem M.6.4. Moreover, two finitely generated torsion K[x|-
modules have the same invariant factor decomposition if, and only
if, they are isomorphic. So are assertion is equivalent to the state-
ment that 77 and Th are similar if, and only if, the K[z]-modules
determined by these linear transformations are isomorphic as K[z]-
modules.

Let V; denote V' endowed with the K[z]-module structure de-
rived from 77 and let V5 denote V' endowed with the K [z]-module
structure derived from 7. Suppose U : Vi — Vs is a K[z]-
module isomorphism; then U is a vector space isomorphism satisfying
Ty(Uv) = 2(Uv) = U(zv) = U(Tyv). Tt follows that Th = UT U .

Conversely, suppose that U is an invertible linear transformation
such that Ty = UT U~ L. It follows that for all f(x) € K[z, f(Tz) =
Uf(Th)U™Y; equivalently, f(To)Uv = U f(Ty)v for all v € V But this
means that U is a K[z]-module isomorphism from V; to Va. |
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Rational canonical form for matrices

Let A be an n—by—n matrix over a field K. Let T be the linear
transformation of K™ determined by left multiplication by A, T'(v) =
Av for v € K™ A is the matrix of T" with respect to the standard
basis of K™. A second matrix A’ is similar to A if, and only if, A’ is
the matrix of T" with respect to some other ordered basis. Exactly
one such matrix is in rational canonical form, according to Theorem
M.6.4. So we have the following result:

Proposition M.6.6. Any n—by-n matriz is similar to a unique ma-
trix in rational canonical form.

Definition M.6.7. The unique matrix in rational canonical form

that is similar to a given matrix A is called the rational canonical
form of A.

The blocks of the rational canonical form of A are companion
matrices of monic polynomials a;(z),...,as(x) such that a;(x) di-
vides a;j(z) if ¢ < j. These are called the invariant factors of A.

The rational canonical form is a complete invariant for similarity
of matrices.

Proposition M.6.8. Two n-by-n matrices are similar in Mat,, (K)
if, and only if, they have the same rational canonical form.

Proof. There is exactly one matrix in rational canonical form in
each similarity equivalence class, and that matrix is the rational
canonical form of every matrix in the similarity class. If two matrices
have the same rational canonical form A, then they are both similar
to A and therefore similar to each other. |

Corollary M.6.9. Suppose K C F are two fields and A, B are two
matrices in Mat,, (K).

(a)  The rational canonical form of A in Mat, (F) is the same
as the rational canonical form of A in Mat,, (K).

(b) A and B are similar in Mat,(F) if, and only if, they are
similar in Mat, (K).
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Proof. The similarity class (or orbit) of A in Mat,,(K) is contained
in the similarity orbit of A in Mat,(F), and each orbit contains
exactly one matrix in rational canonical form. Therefore, the rational
canonical form of A in Mat, (F) must coincide with the rational
canonical form in Mat,, (K).

If A and B are similar in Mat,,(K), they are clearly similar in
Mat,, (F'). Conversely, if they are similar in Mat,,(F'), then they have
the same rational canonical form in Mat,, (F). By part (a), they have
the same rational canonical form in Mat,,(K), and therefore they are
similar in Mat,, (K). |

Computing the rational canonical form

We will now investigate how to actually compute the rational
canonical form. Let T be a linear transformation of an n—dimensional
vector space with basis {e1,...,e,}. Let A = (a; ;) be the matrix of
T with respect to this basis, so T'e; = >, a; je;.

Let F' be the free K[z]-module with basis {f1,..., fn} and define
®: F — V by > hi(z)fi = > hi(T)e;. Then @ is a surjective
K [x]-module homomorphism. We need to find the kernel of ®.

The transformation 7' can be “lifted” to a K[z]-module homo-
morphism of F' by using the matrix A. Define T : ' — F by
requiring that T'f; = >, a;;fi. Then we have ®(T'f) = T®(f) for
all feF.

I claim that the kernel of ® is the range of x — 1. This follows
from three observations:

1. range(x —T') C ker(®).

2. range(z—T)+Fy = F, where I denotes the set of K-linear

combinations of {fi,..., fn}.

3. ker(®)n Fy={0}.
The first of these statements is clear since ®(xf) = ®(Tf) = TP(f)
for all f € F. For the second statement, note that for any h(z) €
KTz,

h@)f; = (hlw) — h(T))f; + h(T) ;.

Since multiplication by x and application of T" commute, there is a
polynomial g of two variables such that h(z)—h(T) = (z—T)g(z,T).
See Exercise M.6.1 Therefore,

(h(z) = h(T))f; € range(x = T),

while h(T')f; € Fy. Finally, if >, o f; € ker(®) N Fy, then 0 =
(>, aifi) =X, avie;. Hence a; = 0 for all s.

Set wj = (x —T)fj =afj — > ;aijfi- 1claim that {wi,...,w,}
is a basis over K|[z] of range(x — T) = ker(®). In fact, this set
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clearly spans range(z —T') over K|[z] because z —T is a K [x]-module
homomorphism. We have

[wl,...,fwn] = [fl,...,fn](xEn—A), (Mﬁl)

and the determinant of the matrix xF,, — A is a monic polynomial
of degree n in K[z], so in particular nonzero. The matrix xE, — A
is not invertible in Mat,, (K [x]), but it is invertible in Mat,, (K (x)),
matrices over the field of rational functions, and this suffices to imply
that {wi,...,w,} is linearly independent over K[z]. See Exercise
M.6.2.

Computing the rational canonical form of 7" is virtually the same
thing as computing the invariant factor decomposition of the K[z|-
module V derived from 7. We now have the ingredients to do this:
we have a free module F' and a K[z]-module homomorphism of F
onto V. We have a basis of ker(®) and the “transition matrix”
from a basis of F' to the basis of ker(®), as displayed in Equation
(M.6.1). So to compute the invariant factor decomposition, we have
to diagonalize the matrix zE, — A € Mat,,(K[z]) by row and column
operations. We want the diagonal entries of the resulting matrix to
be monic polynomials, but this only requires some additional row
operations of type two (multiplying a row by unit in K[z].) We can
compute invertible matrices P and @ such that

P(zE, — A)Q = D(x) = diag(1,1,...,1,a1(x), az(x),...,as(x)),

where the a;(z) are monic and a;(z) divides a;j(z) for ¢ < j. The
polynomials a;(x) are the invariant factors of 7', so they are all we
need in order to write down the rational canonical form of T'. But we
can actually compute a basis of V' with respect to which the matrix
of T is in rational canonical form.

We have 1B, — A= P 1D(x)Q !, so

[wh'- . 7wn]Q_1 = [f17~- . 7fn]P_1D(x)'

(Let us mention here that we compute the matrix P as a product
of elementary matrices implementing the row operations; we can
compute the inverse of each of these matrices without additional
effort, and thus we can compute P~! without additional effort.) Set

[Floee s Fal P = [W1s ooy Yness 215 - -5 28]
This is a basis of F' over K|[z], and
[ Un—ss 2155 26| D(@) = Y1, - Yns, a1 (@) 215 - - -, as(2) 2]
is a basis of ker(®). It follows that
{v1,...,0s} = {P(21),...,P(2s)}
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are the generators of cyclic subspaces Vi,..., Vs of V., such that
V=Vi&. - &V, and v; has period a;(x). One calculates these
vectors with the aid of T if P~ = (b; j(x)), then

zj = Z bin—s+j () fi,

SO
vj =Y bin—sri(T)ei.
7

Let 0; denote the degree of a;j(x). Then
(v1,Tvy,. .. LT oy v, T, .., T2 g J)

is a basis of V' with respect to which the matrix of 7" is in rational
canonical form. The reader is asked to fill in some of the details of
this discussion in Exercise M.6.3.

Example M.6.10.

The characteristic polynomial and minimal polynomial

Let A € Mat,(K). Write x — A for zFE,, — A. We define the
characteristic polynomial of A by x4(x) = det(x — A). The reader
can check that x4(x) is a similarity invariant for A; that is, it is
unchanged if A is replaced by a similar matrix. Let V be an n—
dimensional vector space over K and let 7' € Endg (V). If A is the
matrix of 7" with respect to some basis of V', define xr(z) = xa(x).
It follows from the invariance of y 4 under similarity that xr is well-
defined (does not depend on the choice of basis) and that yp is a
similarity invariant for linear transformations. See Exercise M.6.4.
xr(z) is called the characteristic polynomial of T

Let A be the matrix of T with respect to some basis of V. Con-
sider the diagonalization of zF,, — A in Mat,,(K|z]),

P(‘TEH - A)Q = D((L‘) = dlag(l’ 1) SRR 1, al(x))QQ(x)v SRRE) as(az)),
where the a;(x) are the (monic) invariant factors of 7. We have
xr(z) = xa(z) = det(zE, — A) = det(P~1) det(D(z)) det(Q ™).

P~! and Q7! are invertible matrices in Mat,, (K [x]), so their deter-
minants are units in K[z], that is nonzero elements of K. Because
both xr(x) and det(D(x)) are monic polynomials, it follows that
det(P~1)det(Q™!) = 1, and x7(x) = det(D(z)) = [[; ai(z). We
have proved:



“book” — 2005/3/26 — 16:06 — page 392 — #406

392 M. MODULES

Proposition M.6.11. The characteristic polynomial of T €
Endg (V) is the product of the invariant factors of T. The char-
acteristic polynomial of A € Mat,,(K) is the product of the invariant
factors of A.

The minimal polynomial pr(x) of a linear transformation 7' €
Endg (V) is defined to be the largest of the invariant factors of
T. Thus pr(z) is the period of the K[r]-module determined by
T. Since pr(x) is the monic generator of the annihilator of the
K[z]-module V, it is characterized as the monic polynomial of least
degree in ann(V'), that is, the monic polynomial of least degree such
that HT(T) = 0.

The minimal polynomial pa(z) of a matrix A € Mat, (K) is
defined to be the largest invariant factor of A. The polynomial p4(z)
is characterized as the monic polynomial of least degree such that
pa(A) = 0.

The following result is a corollary of Proposition M.6.11.

Corollary M.6.12. (Cayley-Hamilton Theorem) Let T' € Endg (V)

(a)  The minimal polynomial of T divides the characteristic
polynomial of T

(b)  The minimal polynomial of T has degree at most dim(V').

(c)  xr(T)=0.

Proof. This is immediate, since pup(z) is the largest invariant factor
of T, and yr(x) is the product of all of the invariant factors. [ |

Let us make a few more remarks about the relation between
the minimal polynomial and the characteristic polynomial. All of
the invariant factors of 7" divide the minimal polynomial pr(x), and
x7(z) is the product of all the invariant factors. It follows that
x7(x) and pp(z) have the same irreducible factors, but with possibly
different multiplicities. Since A € K is a root of a polynomial exactly
when = — A is an irreducible factor, we also have that yr(z) and
pr(x) have the same roots, but with possibly different multiplicities.
Finally, the characteristic polynomial and the minimal polynomial
coincide precisely if V' is a cyclic K[zx]-module; i.e., the rational
canonical form of T" has only one block.

Of course, statements analogous to Corollary M.6.12, and of
these remarks, hold for a matrix A € Mat,,(K) in place of the linear
transformation 7.
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The roots of the characteristic polynomial (or of the minimal
polynomial) of " € Endg (V) have an important characterization.
We say that an nonzero vector v € V is an eigenvector of T" with
eigenvalue * X, if Tv = \v.

Proposition M.6.13. Let T' € Endg (V). An element A € K is
a root of xr(x) if, and only if, T has an eigenvector in V with
ergenvalue \.

Proof. Exercise M.6.6 |

Exercises M.6

M.6.1. Let h(z) € KJz| be a polynomial of one variable. Show
that there is a polynomial g(x,y) € K|z, y] such that h(z) — h(y) =
(@ —y)g(z,y).

M.6.2. Set wj = (x—T)f; = xfj—>; aij fi- Show that {w,...,wy,}
is linearly independent over K|zx].

M.6.3. Verify the following assetions made in the text regarding
the computation of the rational canonical form of T'. Suppose that
F is a free K[z] module, ® : FF — V is a surjective K [x]-module
homomorphism, (y1,...,Yn—s,21,-..,2s) is a basis of F', and

(Y1, s Yn—s,a1(x)21,...,as(x)zs)
is a basis of ker(®). Set v; = ®(z;) for 1 < j <'s, and
Vj = Klz]v; = span({p(T)v; : p(x) € K[z]}).
(a) Show that V=Vi&--- @ V.
(b)  Let §; be the degree of a;(x). Show that (vj, Tvj, ..., T% 1v;)
is a basis of V. and that the matrix of T}y, with respect to
this basis is the companion matrix of a;(z).

M.6.4. Show that x4 is a similarity invariant of matrices. Con-
clude that for T' € Endg (V'), xr is well defined, and is a similarity
invariant for linear transformations.

M.6.5. Since xa(x) is a similarity invariant, so are all of its coeffi-
cients. Show that the coefficient of 27! is the negative of the trace
tr(A), namely the sum of the matrix entries on the main diagonal of
A. Conclude that the trace is a similarity invariant.

IThese are half-translated German words. The German Eigenvektor and
FEigenwert mean “characteristic vector” and “characteristic value.”
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M.6.6. Show that A is a root of yr(z) if, and only if, 7" has an
eigenvector in V' with eigenvalue A. Show that v is an eigenvector of
T for some eigenvalue if, and only if, the one dimensional subspace
Kv CV is invariant under 7.

The next four exercises give an alternative proof of the Cayley-
Hamilton theorem. Let T' € Endg(V'), where V' is n—dimensional.
Assume that the field K contains all roots of yr(x); that is, xr(x)
factors into linear factors in K{z].

M.6.7. Let Vo C V be any invariant subspace for T'. Show that
there is a linear operator T' on V/Vj defined by

T(w+ Vo) =T() + Vo

for all v € V. Suppose that (v1,...,v) is an ordered basis of Vp,
and that

(”k+1+V07--->Un+Vb)

is an ordered basis of V/Vj. Suppose, moreover, that the matrix of
Tjy, with respect to (vy,...,v) is Ay and the matrix of T with re-
spect to (vg+1+Vo, ..., v+ V) is Ay, Show that (vi,..., vk, Vgt1,-..,0n)
is an orderd basis of V' and that the matrix of T" with respect to this
basis has the form

A, B

{ 0 Az} ’

where B is some k-by—(n — k) matrix.

M.6.8. Use the previous two exercises, and induction on n to con-
clude that V' has some basis with respect to which the matrix of T’
is upper triangular; that means that all the entries below the main
diagonal of the matrix are zero.

M.6.9. Suppose that A’ is the upper triangular matrix of 7" with
respect to some basis of V. Denote the diagonal entries of A’ by
(A1, ..., An); this sequence may have repetitions. Show that yr(z) =

[Li(z —N).

M.6.10. Let (v1,...,vy,) be a basis of V' with respect to which the
matrix A’ of T'is upper triangular, with diagonal entries (A1, ..., A,).
Let Vo = {0} and V}, = span({v1,...,v;}) for 1 < k < n. Show that
T — A\ maps Vi into Vi1 for all k, 1 < k < n. Show by induction
that (T'— A\g)(T — Agg1) -+ (T — Ap,) maps V into Vi for all k,
1 < k < n. Note in particular that (T"— A\y)--- (T — A\,,) = 0. Using
the previous exercise, conclude that x7(T') = 0, the characteristic
polynomial of T', evaluated at T, gives the zero transformation.
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Remark M.6.14. The previous four exercises show that xr(7') = 0,
under the assumption that all roots of the characteristic polynomial
lie in K. This restriction can be removed, as follows. First, the
assertion x7(7) = 0 for T € Endg (V) is equivalent to the assertion
that xya(A) = 0 for A € Mat,(K). Let K be any field, and let
A € Mat, (K). If F is any field with ' O K then A can be considered
as an element of Mat,,(F'). The characteristic polynomial of A is the
same whether A is regarded as a matrix with entries in K or as
a matrix with entries in F'. Moreover, x4(A) is the same matrix,
whether A is regarded as a matrix with entries in K or as a matrix
with entries in F'.

As is explained in Section 8.2, there exists a field ' O K such
that all roots of x4(z) lie in F. It follows that y4(A) = 0.



