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Proof. Exercise M.2.6. n

Exercises M.2
R denotes a ring and M an R–module.

M.2.1. Prove Proposition M.2.6.

M.2.2. Prove Proposition M.2.7.

M.2.3. Complete the proof of Proposition M.2.12.

M.2.4. Let I be an ideal of R. Show that the quotient module
M/IM has the structure of an R/I–module.

M.2.5. Prove Proposition M.2.13.

M.2.6. Prove Proposition M.2.14.

M.2.7. Let R be a ring with identity element. Let M be a finitely
generated R–module. Show that there is a free R module F and a
submodule K ⊆ F such that M ∼= F/K as R–modules.

M.3. Multilinear maps and determinants
Let R be a commutative ring with identity element. All R–

modules will be assumed to be unital.

Definition M.3.1. Suppose that M1, M2, . . . , Mn and N are mod-
ules over R. A function

ϕ : M1 × · · · × Mn −→ N

is multilinear (or R–multilinear) if for each j and for fixed elements
xi ∈ Mi (i 6= j), the map

x 7→ ϕ(x1, . . . , xj−1, x, xj+1, . . . , xn)

is an R–module homomorphism.

We will be interested in the special case that all the Mi are equal.
In this case we can consider the behavior of ϕ under permutation of
the variables.

Definition M.3.2.
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348 M. MODULES

(a) A multilinear function ϕ : Mn −→ N is said to be symmet-
ric if

ϕ(xσ(1), . . . , xσ(n)) = ϕ(x1, . . . , xn)

for all x1, . . . , xn ∈ M and all σ ∈ Sn.
(b) A multilinear function ϕ : Mn −→ N is said to be skew-

symmetric if

ϕ(xσ(1), . . . , xσ(n)) = ǫ(σ)ϕ(x1, . . . , xn)

for all x1, . . . , xn ∈ M and all σ ∈ Sn.
(c) A multilinear function ϕ : Mn −→ N is said to be alternat-

ing if ϕ(x1, . . . , xn) = 0 whenever xi = xj for some i 6= j.

Lemma M.3.3. The symmetric group acts Sn on the set of multi-
linear functions from Mn to N by the formula

σϕ(x1, . . . , xn) = ϕ(xσ(1), . . . , xσ(n)).

The set of symmetric (resp. skew-symmetric, alternating) multilin-
ear functions is invariant under the action of Sn.

Proof. We leave it to the reader to check that σϕ is multilinear if ϕ
is multilinear, and also that if ϕ is symmetric (resp. skew-symmetric,
alternating), then σϕ satisfies the same condition.

To check that Sn acts on Φn, we have to show that (στ)ϕ =
σ(τϕ). Note that

σ(τϕ)(x1, . . . , xn) = (τϕ)(xσ(1), . . . , xσ(n)).

Now write yi = xσ(i) for each i. Then also yτ(j) = xσ(τ(j)) = xστ(j).
Thus,

σ(τϕ)(x1, . . . , xn) = (τϕ)(y1, . . . , yn)

= ϕ(yτ(1), . . . , yτ(n))

= ϕ(xσ(τ(1)), . . . , xσ(τ(1)))

= ϕ(xστ(1) . . . , xστ(n)) = (στ)ϕ(x1, . . . , xn).

n

Note that that a multilinear function is symmetric if, and only if
σϕ = ϕ for all σ ∈ Sn and skew-symmetric if, and only if, σϕ = ǫ(σ)ϕ
for all σ ∈ Sn. See Exercise xxx.
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Lemma M.3.4. An alternating multilinear function ϕ : Mn −→ N
is skew-symmetric.

Proof. Fix any pair of indices i < j, and any elements xk ∈ M for
k different from i, j. Define λ(x, y) : M2 −→ N by

λ(x, y) = ϕ(x1, . . . , xi−1, x, xi+1, . . . , xj−1, y, xj+1, . . . , xn)

By hypothesis, λ is R–bilinear and alternating: λ(x, x) = 0 for all
x ∈ M . Therefore,

0 = λ(x + y, x + y) = λ(x, x) + λ(x, y) + λ(y, x) + λ(y, y)

= λ(x, y) + λ(y, x).

Thus λ(x, y) = −λ(y, x). This shows that

ϕ(xσ(1), . . . , xσ(n)) = (−1)ϕ(x1, . . . , xn)

when σ is the transposition (i, j).
In general, a permutation σ can be written as a product of trans-

positions, σ = τ1τ2 · · · τℓ. Then

σϕ = τ1(τ2(· · · τℓ(ϕ) · · · )) = (−1)ℓϕ = ǫ(σ)ϕ,

where we have used that Sn acts on the set of alternating multilinear
functions and that ǫ is a homomorphism from Sn to {±1}. n

Lemma M.3.5. Let ϕ : Mn −→ N be a multilinear function. Then
S(ϕ) =

∑

σ∈Sn
σϕ is a symmetric multilinear functional and A(ϕ) =

∑

σ∈Sn
ǫ(σ)σϕ is an alternating multilinear functional.

Proof. For τ ∈ Sn, we have

τS(ϕ) =
∑

σ∈Sn

τσϕ =
∑

σ∈Sn

σϕ = S(ϕ),

since σ 7→ τσ is a bijection of Sn.
A similar argument shows that A(ϕ) is skew-symmetric, but we

have to work a little harder to show that A(ϕ) is alternating.
Let x1, x2, . . . , xn ∈ M , and suppose that xi = xj for some i < j.

The symmetric group Sn is the disjoint union of the alternating group
An and its left coset (i, j)An, where An denotes the group of even
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350 M. MODULES

permutations, and (i, j) is the transposition that interchanges i and
j, and leaves all other points fixed. Thus,

A(ϕ)(x1, . . . , xn) =
∑

σ∈Sn

ǫ(σ)σϕ(x1, . . . , xn)

=
∑

σ∈An

(σϕ(x1, . . . , xn) − (i, j)σϕ(x1, . . . , xn))

=
∑

σ∈An

(ϕ(xσ(1), . . . , xσ(n)) − ϕ(x(i,j)σ(1), . . . , x(i,j)σ(n)))

I claim that each summand in this sum is zero.
The sequences

(σ(1), . . . , σ(n)) and ((i, j)σ(1), . . . , (i, j)σ(n))

are identical, except that the positions of the entries i and j are
reversed. Since xi = xj , the sequences

(xσ(1), . . . , xσ(n)) and (x(i,j)σ(1), . . . , x(i,j)σ(n))

are identical. Therefore,

ϕ(xσ(1), . . . , xσ(n)) − ϕ(x(i,j)σ(1), . . . , x(i,j)σ(n)) = 0.

This shows that A(ϕ)(x1, . . . , xn) = 0. n

Let (a1, a2, . . . , an) be a sequence of elements of Rn. Denote the
i–th entry of aj by ai,j . In this way, the sequence (a1, a2, . . . , an)
is identified with an n–by–n matrix whose j–th column is aj . Let
ϕ : (Rn)n −→ R be the multilinear function ϕ(a1, a2, . . . , an) =
a1,1 · · · an,n. Define Λ = A(ϕ). Thus,

Λ(a1, . . . , an) =
∑

σ∈Sn

ǫ(σ)ϕ(aσ(1), . . . , aσ(n))

=
∑

σ∈Sn

ǫ(σ)a1,σ(1) · · · an,σ(n).
(M.3.1)

According to Lemma M.3.5, Λ is an alternating multilinear function.
Moreover, Λ satisfies Λ(êee1, . . . , êeen) = 1.

The summand belonging to σ in Equation M.3.1 can be written
as

ǫ(σ)
n

∏

i=1

ai,σ(i) = ǫ(σ)
∏

(i,j)
j=σ(i)

ai,j

= ǫ(σ−1)
∏

(i,j)

i=σ−1(j)

ai,j = ǫ(σ−1)
n

∏

j=1

aσ−1(j),j
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Therefore

Λ(a1, . . . , an) =
∑

σ∈Sn

ǫ(σ−1)aσ−1(1),1 · · · aσ−1(n),n.

=
∑

σ∈Sn

ǫ(σ)aσ(1),1 · · · aσ(n),n.
(M.3.2)

Now suppose that µ : (Rn)n −→ R is an alternating multilinear
function. Let (a1, a2, . . . , an) be any sequence of elements of Rn, and
denote the i–th entry of aj by ai,j , as above, Then aj =

∑

i ai,jêeei.
By the multilinearity of µ,

µ(a1,a2, . . . , an) = µ(
∑

j1

ai1,1êeei1 , . . . ,
∑

in

ain,nêeein)

=
∑

i1,i2,...,in

ai1,1 · · · ain,n µ(êeei1 , . . . , êeein).

Because µ is alternating, µ(êeei1 , . . . , êeein) is zero unless the sequence
of indices (i1, . . . , in) is a permutation of (1, 2, . . . , n). Thus

µ(a1, a2, . . . , an) =
∑

σ∈Sn

aσ(1),1 · · · aσ(n),nµ(êeeσ(1), . . . , êeeσ(n)

=
∑

σ∈Sn

aσ(1),1 · · · aσ(n),nǫ(σ)µ(êee1, . . . , êeen)

= Λ(a1, . . . , an)µ(êee1, . . . , êeen).

We have proved the following result:

Proposition M.3.6. There is a unique alternating multilinear func-
tion Λ : (Rn)n −→ R satisfying Λ(êee1, . . . , êeen) = 1. The function Λ
satisfies

Λ(a1, . . . , an) =
∑

σ∈Sn

ǫ(σ)a1,σ(1) · · · an,σ(n)

=
∑

σ∈Sn

ǫ(σ)aσ(1),1 · · · aσ(n),n.

Moreover, if µ : (Rn)n −→ R is alternating and multilinear, then for
all a1, . . . , an ∈ Rn,

µ(a1, . . . , an) = Λ(a1, . . . , an)µ(êee1, . . . , êeen).

Definition M.3.7. The determinant of an n–by–n matrix with en-
tries in R is defined by

det(A) = Λ(a1, . . . , an),

where a1, . . . , an ∈ Rn are the columns of A.
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352 M. MODULES

Corollary M.3.8.

(a) The determinant is characterized by the following proper-
ties:
(i) det(A) is an alternating multilinear function of the

columns of A.
(ii) det(En) = 1, where En is the n–by–n identity matrix.

(b) If µ : Matn(R) −→ R is any function that, regarded as a
function on the columns of a matrix, is alternating and mul-
tilinear, then µ(A) = det(A)µ(En) for all A ∈ Matn(R).

Proof. This follows immediately from the properties of Λ given in
Proposition M.3.6. n

Corollary M.3.9. Let A and B be n–by–n matrices over R. The
determinant has the following properties

(a) det(At) = det(A), where At denotes the transpose of A.
(b) det(A) is an alternating multilinear function of the rows of

A.
(c) If A is a triangular matrix (i.e. all the entries above (or be-

low) the main diagonal are zero) then det(A) is the product
of the diagonal entries of A.

(d) det(AB) = det(A) det(B)
(e) If A is invertible in Matn(R), then det(A) is a unit in R,

and det(A−1) = det(A)−1.

Proof. The identity det(At) = det(A) of part (a) follows from the
equality of the two formulas for Λ in Proposition ??. Statement
(b) follows from (a) and the properties of det as a function on the
columns of a matrix.

For (c), suppose that A is lower triangular; that is the matrix
entries ai,j are zero if j > i. In the expression

det(A) =
∑

σ∈Sn

ǫ(σ)a1,σ(1) · · · an,σ(n)

the summand belonging to σ is zero unless σ(i) ≤ i for all i. But the
only permutation σ with this property is the identity permutation.
Therefore

det(A) = a1,1a2,2 · · · an,n.

To prove (d), fix a matrix A and consider the function µ : B 7→
det(AB). Since the columns of AB are Ab1, . . . , Abn, where bj is
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M.3. MULTILINEAR MAPS AND DETERMINANTS 353

the j–th column of B, it follows that µ is an alternating mulilinear
function of the columns of B. Moreover, µ(En) = det(A). There-
fore det(AB) = µ(B) = det(A) det(B), by part (b) of the previous
corollary.

If A is invertible, then

1 = det(En) = det(AA−1) = det(A) det(A−1),

so det(A) is a unit in R, and det(A)−1 = det(A−1). n

Lemma M.3.10. Let ϕ : Mn −→ N be an alternating mulilinear
map. For any x1, . . . , xn ∈ M , any pair of indices i 6= j, and any
r ∈ R,

ϕ(x1, . . . , xi−1, xi + rxj , xi+1, . . . , xn) = ϕ(x1, . . . , xn).

Proof. Using the linearity of ϕ in the i—th variable, and the alter-
nating property,

ϕ(x1, . . . , xi−1,xi + rxj , xi+1, . . . , xn)

= ϕ(x1, . . . , xn) + r ϕ(x1, . . . , xj , . . . , xj , . . . , xn)

= ϕ(x1, . . . , xn).

n

Proposition M.3.11. Let A and B be n–by–n matrices over R.

(a) If B is obtained from A by interchanging two rows or
columns, then det(B) = −det(A).

(b) If B is obtained from A by multiplying one row or column
of A by r ∈ R, then det(B) = r det(A).

(c) If B is obtained from A by adding a multiple of one column
(resp. row) to another column (resp. row), then det(B) =
det(A).

Proof. Part (a) follows from the skew-symmetry of the determinant,
part (b) from multilinearity, and part (c) from the previous lemma.

n

It is exceedingly inefficient to compute determinants by a formula
involving summation over all permuations. The previous proposition
provides an efficient method of computing determinants, when R is a
field. One can reduce a given matrix A to triangular form by elemen-
tary row operations: interchanging two rows or adding a multiple of
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one row to another row. Operations of the first type change the sign
of the determinant while operations of the second type leave the de-
terminant unchanged. If B is an upper triangular matrix obtained
from A in this manner, then det(A) = (−1)k det(B), where k is the
number of row interchanges performed in the reduction. But det(B)
is the product of the diagonal entries of B, by part (c) of Corollary
M.3.9.

The same method works for matrices over an integral domain, as
one can work in the field of fractions; of course, the determinant in
the field of fractions is the same as the determinant in the integral
domain.

Lemma M.3.12. If A is a k–by–k matrix, and Eℓ is the ℓ–by–ℓ
identity matrix, then

det

[

A 0
0 Eℓ

]

= det

[

Eℓ 0
0 A

]

= det(A).

Proof. The function µ(A) = det

[

A 0
0 Eℓ

]

is alternating and mul-

tilinear on the columns of A, and therefore by Corollary M.3.8,
µ(A) = det(A)µ(Ek). But µ(Ek) = det(Ek+ℓ) = 1. This shows

that det

[

A 0
0 Eℓ

]

= det(A).

The proof of the other equality is the same. n

Lemma M.3.13. If A and B are square matrices, then

det

[

A 0
C B

]

= det(A) det(B).

Proof. We have
[

A 0
C B

]

=

[

A 0
0 E

] [

E 0
C E

] [

E 0
0 B

]

.

Therefore, det

[

A 0
C B

]

is the product of the determinants of the

three matrices on th right side of the equation, by Corollary M.3.9

(d). According to the previous lemma det

[

A 0
0 E

]

= det(A) and

det

[

E 0
0 B

]

= det(B). Finally

[

E 0
C E

]

is triangular with 1’s on the

diagonal, so its determinant is equal to 1, by Corollary M.3.9 (c). n
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Let A be an n–by–n matrix over R. Let Ai,j be the (n− 1)–by–
(n − 1) matrix obtained by deleting the i–th row and the j–column
of A. The determinant det(Ai,j) is called the (i, j) minor of A, and
(−1)i+j det(Ai,j) is called the (i, j) cofactor of A. The matrix whose
(i, j) entry is (−1)i+j det(Ai,j) is called the cofactor matrix of A.
The transpose of the cofactor matrix is sometimes called the adjoint
matrix of A, but this terminology should be avoided as the word
adjoint has other incompatible meanings in linear algebra.

The following is called the cofactor expansion of the determinant.

Proposition M.3.14. (Cofactor Expansion) Let A be an n–by–n
matrix over R.

(a) For any i,

det(A) =
n

∑

j=1

(−1)i+jai,j det(Ai,j).

(b) If i 6= k, then

0 =
n

∑

j=1

(−1)i+jak,j det(Ai,j).

Proof. Fix i and j Let Bj be the matrix matrix obtained from A by
replacing all the entries of the i–th row by 0’s, except for the entry
ai,j , which is retained. Perform i+j−2 row and column interchanges
to move the entry ai,j into the (1, 1) position. The resulting matrix
is

B′
j =

















ai,j 0 · · · 0
a1,j

a2,j Ai,j

...
an,j

















.

That is, ai,j occupies the (1, 1) position, the remainder of the first row
is zero, the remainder of the first columns contains entries from the j–
th column of A, and the rest of the matrix is the square matrix Ai,j .
According to Lemma M.3.13, det(B′

j) = ai,j det(Ai,j). Therefore

det(Bj) = (−1)i+j det(B′
j) = (−1)i+jai,j det(Ai,j).

Since the matrices Bj are identical with A except in the i–th
row, and the sum of the i–th rows of the Bj ’s is the i–th row of A,
we have

det(A) =
∑

j

det(Bj) =
n

∑

j=1

(−1)i+jai,j det(Ai,j).
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This proves (a).
For (b), let B be the matrix that is identical to A, except that

the i–th row is replaced by the k–th row of A. Since B has two
identical rows, det(B) = 0. Because B is the same as A except in
the i–th row, Bi,j = Ai,j for all j. Moreover, bi,j = ak,j . Thus,

0 = det(B) =
∑

j

(−1)i+jbi,jBi,j =
∑

j

(−1)i+jak,jAi,j .

n

Corollary M.3.15. Let A be an n–by–n matrix over R and let C
denote the cofactor matrix of A. Then

ACt = CtA = det(A)E,

where E denotes the identity matrix.

Proof. The sum
n

∑

j=1

(−1)i+jak,j det(Ai,j).

is the (k, i) entry of ACt. Proposition M.3.14 says that this entry is
equal to 0 if k 6= i and equal to det(A) if k = i, so ACt = det(A)E.

The other equality CtA = det(A) follows from some gymnastics
with transposes: We have (At)i,j = (Aj,i)

t. Therefore,

(−1)i+j det((At)i,j) = (−1)i+j det(Aj,i).

This says that the cofactor matrix of At is Ct. Applying the equality
already obtained to At gives

AtC = det(At)E = det(A)E,

and taking transposes gives

CtA = det(A)E.

n

Corollary M.3.16. An element of Matn(R) is invertible if, and
only if, its determinant is a unit in R.

Proof. We have already seen that the determinant of an invertible
matrix is a unit (Corollary M.3.9 (e)). On the other hand, if det(A)
is a unit in R, then det(A)−1Ct is the inverse of A. n
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Example M.3.17. An element of Matn(Z) has an inverse in Matn(Q)
if its determinant is nonzero. It has an inverse in Matn(Z) if, and
only if, its determinant is ±1.

Example M.3.18. For any be an n–by–n matrix, let α(A) denote
the transpose of the matrix of cofactors of A. I claim that

(a) det(α(A)) = det(A)n−1, and
(b) α(α(A)) = det(A)n−2A.

Both statements are easy to obtain under the additional assump-
tion that R is an integral domain and det(A) is nonzero. Start
with the equation Aα(A) = det(A)E, and take determinants to get
det(A) det(α(A)) = det(A)n. Assuming that R is an integral domain
and det(A) is nonzero, we can cancel det(A) to get the first assertion.
Now we have α(A)α(α(A)) = det(α(A))E = det(A)n−1E, as well as
α(A)A = det(A)E. It follows that α(A)

(

α(α(A)) − det(A)n−2A) = 0.
Since det(A) is assumed to be nonzero, α(A) is invertible in Matn(F ),
where F is the field of fractions of R. Multiplying by the inverse of
α(A) gives the second assertion.

The additional hypotheses can be eliminated by the following
trick. Let R0 = Z[x1,1, x1,2, . . . , xn,n−1, xn,n], the ring of polynomials
in n2 variables over Z. Consider the matrix X = (xi,j)1≤i,j≤n in
Matn(R0). Since R0 is an integral domain and det(X) is nonzero in
R0, it follows that

(a) det(α(X)) = det(X)n−1, and
(b) α(α(X)) = det(X)n−2X.

There is a unique ring homomorphism ϕ : R0 −→ R taking 1 to 1
and xi,j to ai,j , the matrix entries of A. The homomorphism extends
to a homomorphism ϕ : Matk(R0) −→ Matk(R) for all k. By design,
we have ϕ(X) = A.

It is easy to check that ϕ(det(M)) = det(ϕ(M) for any square
matrix M over R0. Observe that ϕ(Mi,j) = ϕ(M)i,j . Using these
two observations, it follows that ϕ(α(M)) = α(ϕ(M)), and, finally,
ϕ(det(α(M))) = det(α(ϕ(M))).

Since ϕ(X) = A, applying ϕ to the two identities for X yield the
two identities for A.

This trick is worth remembering. It is an illustration of the
“principle of permanence of identities,” which says that an identity
that holds generically holds universally. In this instance, proving
an identity for matrices with nonzero determinant over an integral
domain sufficed to obtain the identity for a variable matrix over
Z[{xi,j}]. This in turn implied the identity for arbitrary matrices
over an arbitrary commutative ring with identity.
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Exercises M.3
M.3.1. Show that if ϕ : Mn −→ N is multilinear, and σ ∈ Sn,
then σϕ is also multilinear. Show that each of the following sets is
invariant under the action of Sn: the symmetric multilinear func-
tions, the skew-symmetric multilinear functions, and the alternating
multilinear functions.

M.3.2.

(a) Show that (Rn)k has no nonzero alternating multilinear
functions with values in R, if k > n.

(b) Show that (Rn)k has nonzero alternating multilinear func-
tions with values in R, if k ≤ n.

(c) Conclude that Rn is not isomorphic to Rm as R–modules,
if m 6= n.

M.3.3. Compute the following determinant by row reduction. Ob-
serve that the result is an integer, even though the computations
involve rational numbers.

det





2 3 5
4 3 1
3 −2 6





M.3.4. Prove the cofactor expansion identity

det(A) =
n

∑

j=1

(−1)i+jai,j det(Ai,j).

by showing that the right hand side defines an alternating multilinear
function of the columns of the matrix A whose value at the identity
matrix is 1. It follows from Corollary M.3.8 that the right hand is
equal to the determinant of A

M.3.5. Prove a cofactor expansion by columns: For fixed j,

det(A) =
n

∑

i=1

(−1)i+jai,j det(Ai,j).

M.3.6. Prove Cramer’s rule: If A is an invertible n–by–n matrix
over R, and b ∈ Rn, then the unique solution to the matrix equation
Ax = b is given by

xj = det(A)−1 det(Ãj),

where Ãj is the matrix obtained by replacing the j–th column of A
by b.


