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PIECEWISE POLYNOMIAL COLLOCATION FOR BOUNDARY INTEGRAL
EQUATIONS*

KENDALL E. ATKINSON AND DAVID CHIEN

Abstract. This paper considers the numerical solution of boundary integral equations of the second kind for
Laplace’s equation Au 0 on connected regions D in R with boundary S. The bounda S is allowed to be smooth
or piecewisc smooth, and we let {AK _< K _< N} be a triangulation of S. The numerical method is collocation
with approximations which arc pieccwise quadratic in the parametrization variables, leading to a numerical solution

UN. Superconvergence results for UN are given for S a smooth surface and for a special type of refinement strategy
for the triangulation. We show that u us is 0(84 log 8) at the collocation node points, with 8 being the mesh
size for AK }. Error analyses are given are given for other quantities, and an important error analysis is given for
the approximation of S by piecewise quadratic interpolation on each triangular element, with S either smooth or

piecewise smooth. The convergence result we prove is only 0(82) but the numerical experiments suggest the result is
0(84) for the error at the collocation points, especially when S is a smooth surface. The numerical integration of the
collocation integrals is discussed, and extended numerical examples are given for problems involving both smooth
and piecewise smooth surfaces.
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1. Introduction. In this paper, we consider the numerical solution of boundary integral
equations of the second kind for solving Laplace’s equation Au 0 on connected regions D
in R3. The collocation method with piecewise polynomial approximations is the numerical
method being analyzed. Because of the practical need to use easily computable approxima-
tions of the surface, we analyze the effect of using interpolation to approximate the surface
of the region. We also discuss the effect of numerical integration of the collocation inte-
grals.

A major consideration in the error analysis of numerical methods for these boundary
integral equations is whether the boundary of D, call it S, is smooth or piecewise smooth.
If S is smooth, then the associated integral operator is compact and there is a wealth of
results available for the error analysis. But if S is only piecewise smooth, then the integral
operator is not compact, and moreover, the operator can be viewed as involving a Dirac delta
function in its definition. In this case, other methods of error analysis are required. The
most widely used techniques originated with Wendland [23], in which he adapted and greatly
extended a technique introduced in [20] for the theoretical analysis of such integral equations
for the planar Dirichlet problem for Laplace’s equation. We use Wendland’s ideas in our
analysis of the collocation method given below in 5. Otherapproaches for this case are under
development; for example, see Elschner [10] in which results of Graham and Chandler [12]
for the planar problem are generalized to Galerkin methods for polyhedral boundaries in R3,
and see Rathsfeld [17]. For a general survey of the use ofboundary integral equations to solve
Laplace’s equation in three dimensions, see [5],

Two problems for Laplace’s equation and their associated boundary integral equations
are studied in this paper.

P1. The interior Dirichlet problem. Let D be a bounded, open, simply connected region
in R3 and let its boundary S be piecewise smooth, which is defined more precisely in 2. The
problem is to find u C(/)) tq C2(D) such that

*Received by the editors August 19, 1992; accepted for publication (in revised form) March 14, 1994.
tDepartment of Mathematics, University of Iowa, Iowa City, Iowa 52242 (atkinson@math. uiowa, edu).

The research of this author was supported in part by National Science Foundation grant DMS-9003287.
tDepartment of Mathematics, California State University San Marcos, San Marcos, California 92096 (ch+/-

csusm, edu).

651



652 K. ATKINSON AND D. CHIEN

Au(A) 0, A D,

u(P) f(P), P S.

We assume u can be represented as a double-layer potential:

fs 0 [ 1 ] dSg"’ AD.(1) P(Q),vu A-QI

The density function p is determined from the integral equation

fsP(Q)vvuO [ 1]dSQ+[2zr-f2(P)]p(P)=f(P),,p_Q. PS.(2) 2zrp(P) +

Va denotes the unit normal to S at Q (if it exists), pointing into D. The quantity f2(P) is the
inner solid angle of S at P 6 S and we assume

0 < f2(P) < 4rr.

Symbolically, we write the integral equation (2) as

Under suitable assumptions on S,

is a bounded linear operator.

(2rr +/C)p f.

E. c(s) c(s)

P2. The exterior Neumann problem. Let D and S be as above and let De R3\/, the
region exterior to D and S. The problem is to find u C()e) tq C2(De) such that

(3)

Au(A) O, A De,

Ou(P)
f(P), P S,

u(P)=O(IpI-1), IVu(P) l=O(IPI-z) as PI-
It can be shown that such a function u exists (under suitable assumptions on S and f and that
Green’s third identity can be applied to u:

fs 1 dSQ-fsu(Q) 0 [ ]dSQ, AD.(4) 4zru(A)= f(Q) A- Q Va A-QI

To find u on S, we solve the integral equation

fsu(Q)vO [ ]dSp.+[2rr-fZ(P)]u(P),P-Q,
2zru(P) +

P S.(5) f(Q) P- Q
dSQ,

Then (4) gives u on De. Symbolically, we write (5) as

(2r +/C)u Sf

with/C as before and $ the single-layer potential integral operator.



PIECEWISE POLYNOMIAL COLLOCATION FOR BIE 653

The integral equations (2) and (5) are different only in their right-hand inhomogeneous
term. With (5), we can study the error in the numerical solution of the integral equation by
using problems for which we know the true solution of (3). With equation (2), we do not
know the true solution in general (except when f 1), and thus the numerical solution must
be checked indirectly by evaluating (1) numerically and comparing it to a known solution u.
This turns out to also be of interest, because integral formulas like (1) are generally known to
converge faster than the density function that solves the integral equation. A further discussion
is given later.

In 2, we describe briefly the triangulation of the surface S. The collocation method
and the surface approximation are based on piecewise quadratic isoparametric interpolation;
this is described in 2, together with the numerical integration methods used in evaluating the
collocation integrals. The collocation method with S smooth is discussed in 3, and numerical
examples are given in 4. The corresponding results for the collocation method when S is
only piecewise smooth are given in 5 and 6. Some of the methods of this paper follow those
of Atkinson [2], [3], but we also involve the new methods of analysis given in Chien [8] to
improve on the error results of the earlier papers.

Although our analysis is for only quadratic approximation, the method used will generalize
to other degrees of piecewise polynomial approximation. The difficulty of our argument has
led us to specialize to one case; in addition, it is one of the more important cases.

2. Preliminaries. We describe the triangulation scheme and associated interpolation and
quadrature. The method used was discussed in [2], [3], and we assume a familiarity with those
papers, including the notation used in them.

As discussed in [2], we assume the surface S can be written as

(6) S S1 U S2 U U Sj,

where each Si is a closed, "smooth" surface in R3. The only possible intersection of a pair Si
and S] is to be along a common portion of the edges of these two sub-surfaces. Assume that
for each Sj, there is a mapping

1-1
(7) Fj" Rj onto Sj, < j < J,

where Rj is a polygonal domain in the plane and Fj C6(R]). In this case, we say S
is piecewise smooth. By a smooth surface, we mean that for each point P 6 S, there is
a neighborhood on S of P, with the neighborhood having a local six,times continuously
differentiable parametrization in R2.

The surface S of (6) is divided into a triangular mesh

(8) A/<,v I1 < r < N

for a sequence N N, N2 Each Sj is to be broken apart into a set of nonoverlapping
triangular shaped elements Ar,u’s, about which we say more below. In referring to the
element Ar,v, the reference to N will be omitted, but understood implicitly. Define the mesh
size of (8) by

3u max diam(A/<),
I<K<N

(9) diam(Ar)= max IP-q I.
p,qAr

Let cr denote the unit simplex in the st-plane

a={(s,t) 10<s,t,s+t<_ 1}.
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FIG. 1. The unit simplex.

Let p P6 denote the three vertices and three midpoints of the sides of or, numbered
according to Fig. 1.

One way of obtaining the triangulation (8) and the mappings from tr to each Ar is by
means of the parametric representation (7) for the region Sj of (6). Triangulations of Rj map
onto triangulations of Sj. Since the Rj’s are polygonal domains and can be written as a union
of triangles, without loss of generality, we assume in this paper that the Rj’s are triangles.
A paraboloid with a top is a good example of an S that satisfies our assumptions; a circular
cone is an example of an S for which some of above assumptions are not valid, because of the

discontinuity of the gradient at the vertex.
Let Ar be an element in the triangulation of Rj, and let "b’, v’2, and 3 be its vertices.

Define

(10) mr(s, t) Fj (U’l + t’2 + s3), u 1 s t, (s,,t) r

and let Ar be the image of Ar under this mapping. Also, if any two elements in this
triangulation have a side in common, then their intersection will be an entire side of both
triangles. Most surfaces S of interest can be decomposed as in (6), with each Sj representable
as in (7). Also, the surface S could be smooth, and we would often still want to decompose it
as in (6).

The mapping (10) is used in defining interpolation and numerical integration on AK.

Introduce the node points for Ar by

Vj, K mK(Pj), j=l 6.

Collectively, the node points of the triangulation Ar will be denoted by

{viii <i <No},

with No being the number of distinct node points.
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1 6 3
FIG. 2. Refinement.
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v v_2

V

FIG. 3. A symmetric pair oftriangles.

The sequence of triangulations (8) will usually be obtained by successive refinements.
The refinement process is based on connecting the midpoints of the sides of a given element
Ar. Given {’1 ’6 }, connect v4, vs, v6 by straight lines, as in Fig. 2, producing.four new
triangular elements. The new elements all are congruent and they are similar to Ar. More
importantly, any symmetric pair oftriangles, as shown in Fig. 3, has the following property:

(11) V"l v N1 ’4) and v"l v’3 (1 ’5).

The assumptions on S and the node points that we made in this section are for the use
of quadratic interpolation. There are other degrees of interpolation that can be used, and the
assumptions on the smoothness of S and the definition of the nodes will change appropriately.
But the general process of refinement will still remain the same and we still subdivide Ar’s
in the same way as for the quadratic interpolation.
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To define interpolation, introduce the six basis functions for quadratic interpolation on a.
Letting u (s + t), define

ll(s, t) u(2u 1),

14(s, t) 4tu,

/2(s, t) t(2t 1),

15(s, t) 4st,

13(S, t) s(2s 1),

16(S, t) 4su.

Define a corresponding set of basis functions {lj, x(q)} on At"

lj, K(mK(s,t)) /j(S, t), l<j<6, I<K<N.

Given a function f C(S), define

6

(12) T’sf(q) -] f(vj, r)lj, r(q), q Ax,
j=l

for K 1 N. This is called the piecewise quadratic isoparametric function interpolat-
ingf on the nodes of the mesh Ar for S.

It is straightforward that 79N is a bounded projection operator and IINII 5/3. Also,
for any f C3 (S),

(13) Ilf 7ufll O (’3u),
where 8N is the mesh size of the triangulation A r,N of Rj’s. See [2].

Other kinds of interpolation can be used, such as piecewise cubic isoparametric inter-
polation. In this case, we need ten node points, Pl Pl0, and ten basis functions for the
interpolation on o’. The error analysis is the same, although somewhat more complicated.

We also use the same quadratic in...terpolation scheme to construct an approximate surface
S for S. The approximate surface S is composed of elements A Ar, with Ar an
interpolant of A r. Write

(14) mr(s, t) x2r(s, t) (s, t) a.

x3r(s, t)

The reference to K will be omitted, but understood implicitly. Define

(15) r(s, t) mr(pj)lj(s, t) =, xZr(pj)lj(s, t)
=’ E=l x3r(p)l.i(s, t)

(s,t) 6a.

Thus, r(s, t) interpolates rn r(s, t) at {pi P6}, and each component is quadratic in (s, t).
We introduce two major numerical integration schemes that we have used. The first

numerical integration method is the 3-point rule

(16) f
6

h(s, t) da - j=4 h(pj)

This method has degree of precision two, integrating exactly all quadratic polynomials.
Chien [82 shows that the associated composite rule over S is O(N) where ’N is the mesh
size of Ar }.
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The 3-point rule is mainly for computing integrals if the integrands are continuous. In
order to get the above results, the integrands are required to be four times continuously dif-
ferentiable. If the integrands are continuous or smooth on the Ax, but there is a nearby
singularity, we need to use a better numerical integration method. The second method is the
rule T2:5-1 from Stroud [22, p. 314]:

(17)
7

f h(s, t) dtr j=l Wjh(rj)

The weights wj and nodes rj are given in the above reference. This formula has degree of
precision five.

3. Collocation on smooth boundaries. Our collocation method for solving an integral
equation (. +/C)p g can be written as

(18) ,. + "]gN ]C-. PN Tug, ,k 2r

The function g can be the function f of (2) or Sf of (5). We discuss results for this ap-
proximation and later in the section give error results for the effect of using an interpolatory
approximation of the smooth surface S.

An important auxiliary solution for the collocation method is the iterated collocation
solution

It satisfies the equations

(19)

(20)

N -:-(g 1CpN).

(x +/7:’v)v g,

79vv pv.

(21)

The questions of stability for (18) and (19) are linked by the identities

1
(x + K;7’s)- [I -/C(X + "]’)NK) I’N],

(. -’[- "jDNK)=1 "[I PN(. +

The solvability of (18) is determined from the standard theory for projection methods,
for example, see Atkinson [1, pp. 50-62]. With the assumption of (a) compactness for/C
C(S) --+ C (S), and (b) pointwise convergence on C(S) of the projections T’N to I, we have
that

I1(I- 7N)/CII 0 as n

From this, we have the standard result that if (. +/C)-1 exists on C (S), then (, + T’N]()-I
exists and is uniformly bounded for all sufficiently large N, say N >_ No. The existence of
uniform boundedness of (X +/CPN)-1 then follows from (21).

For the error in pv and 3, use

P PN ,(. -[" "NK)-1 (P ’NP),

p v -(x + Pu)-K;(p "Pvp).
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The quantity/C(p T’N p) often converges to zero more rapidly than p 79Np does. Using
(20), we conclude that Pv is superconvergent to p at the collocation node points. We make
use of this in the following theorem.

THEOREM 3.1. Consider the integral equation (2) and (5) with solution p. Let S be a
smooth surface in R3and assume the unknownfunction p E C4 S). Then

(22) max p(vi) PN(I)i) 1= O (4N log"v),
<i<No

where lV is the mesh size ofthe triangulation AI,lV ofthe Rj ’s.
Proof. (a) The major part of the proof is concerned with measuring 1C(l 79v)p(P) for

all P vi, a node point.. Later in the proof, we use this to prove (22). Note we use the exact
surface S in this theorem. Since the solid angle f2 (P) 2zr for every P on a smooth surface,
the integral equation (2) can be simplified as

fs 0 [ ] dsQ f(P) P27rp(P) + P(Q)"’o. P Q

Using the triangulation scheme in 2, the compact operator/C can be written as

(23) ICp(P) E p(mK(s, t))-y-.7,. DsmK x Dtmx def.
K

For Q mr(s, t),

v(s, t) % + DsmK x DtmK
Dsml x Dtm:[’

with the sign chosen so that ua points into the bounded domain D.
Without loss of generality, we assume the sign of vQ is always positive, and (23) becomes

(24) 1Cp(P) f p(mi,:(s, t))
(Dsml x Dtmtc) (P mtc(s, t))

ds dt
c e- m:(s, t)13

In order to measure the error 1C(l PlV)p(P) for P a node point, we need to examine the
local error contributed by each AK.

For each A to, the integrand of the equation (24) has one singularity at P when P A/,
and it is smooth over Ac with P ’ A:, although it is increasingly peaked as P and Ax
become closer together. We first compute the error for those A:’s which contain P.

For simplifying notation, we assume P (0, 0, 0) and mg (0, 0) (0, 0, 0). The error
in integrating over Ac equals

(25) f (p(mg(s, t))- Pgp(mlc(S, t)))
(Dmc m:(s,XDtmK).t)13mc(s’ t)

ds dr.

This integral exists even though rn(0, 0) 1= 0. To see this, use the Taylor error formula
for the xc about (s, t) (0, 0). Then (25) equals

(26) f h(s, t; )
dcr,

g(s, t; )

where h and g are polynomials in s and t, and their coefficients are of size O (’7) and O (3),
respectively. Also, h and g are polynomials ofdegrees two and three, respectively, which shows
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the existence of itegral (26), which is O(’4). (When speaking of an order of convergence,
say one based on 8, the order of convergence is uniform with respect to any absent variable or
index.)

When P ’ AK, P mK never equals zero for (s, t) or. The kernel function, tc(s, t),

x(s, t)=
(DsmK DtmK) (P mK(S, t))

P- mK(s, t)13

is smooth. Compute the partial derivative Xs before expanding x(s, t) about (0, 0).

x,(s, t)
[Ds(DsmK x DtmK)] (P mK) (DsmK DtmK) DsmK

--3

IP--mgl3

[(DsmK x DtmK) (P mK)] [DsmK (P mK)]
[P--mKI5

[Ds(Dsmx x DtmK)] (P mK)

IP--mxl3

[(DsmK x DtmK) (P mK)] [Dsmx (P mK)]
--3

IP--mKI5

The term (DsmK DtmK) DsmK was dropped because (DsmK DtmK) _L DsmK. Also

(DsmK DtmK).(P--mK) =l DsmK DtmK 1. P--mK l" COS0 l-

0 is the angle between the vectors DsmK x DtmK and P rn K, and 0 is a function of s and t"

(27) cos0 < P- mK(S, t) l. constant (s, t).

See [16, p. 349]. Therefore, tcs is 0(3/d2) where dK =1 P mK(O, 0) I. Using a similar
calculation, we find that xt is also O(3/d). We now expand x(s, t) about (0, 0) and have
the following formula:

(28) x(s, t) x(O, O) + O(3/d).

(29)

The error of P(mK) 79NP(mK) is

p(mK) 79Np(mK) HK(S, t) -+- O(’4),

where

/-/(s, t)= s=- +t (o, o) s + tj (o, O)lj(s, t)

Note that x(0, 0) and HK(S, t) are O(2/d2K) and O(3), respectively.
Combining (28) and (29), we have

t) (P(mK) 79NP(mK)) dcr

for every AK which does not contain P.
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’sWe now add all errors contributed by each Ar. Let T’ be the set of Ax which contain
P, and let T be the set of the remaining Ar’s, which do not contain P. Then,

(30)

1C(p Pnp)(P) fs x(P’ Q) (P(Q) 79NP(Q)) dSQ

f tc(s, t)(p(mK) 79NP(mK)) da
AK-T’

+ _, X(s, t)(P(mK)--TPNp(mK))da
ArT

0("4) + f K(S, tl(p(mK) T)Np(mKI)da.
AK6T

O("4) is contributed by AK’S which are in T’, and T’ has at most six elements
The error contributed by each AK in T is O(’5/dr). Examining the error carefully, we

find that cancellation happens on each symmetric pair of triangles. Thus, for the dominant
terms in the error,

x(O, O)Hi(s, t)+ x(O, O)Hj(s, t)--0

if Ai and Aj are a symmetric pair of triangles. This improves the error from O("5/dzr) to
O ("6/dZr) for each AK that is part of a symmetric pair of triangles. Let T1 be the set of these
kinds of triangles. Let T2 be the set of triangles that are not in T.

The error contributed by triangles in T2 arises from the term

I(0, 0). HK(S, t)

(Dsmg(O, O) x DtmK(O, 0)). (P- inK(0, 0))
P- mK(O. 0)13

IHK(s, t)

(DsmK (0, O) X DtmK (0, 0)) (P rn K (0, 0)) cos 0

P- mK(0, 0)13

(Dmr(O, O) x DtmK(O, 0))1
P- mr(0, 0)

Hr(s, t) l- 0

HK(s, t)

See (27). Thus, the error analysis has been improved from 0(5/d21) to O(5/dr), which is
contributed by each triangle in

Let

d(P) d min {dr PC’At:, K 1 N}

For simplicity, we take dr d, 2d depending on how far the Ar is from the point P.
(A somewhat more.complicated argument can be based on a lower bound of a similar type
for dr.) Let r 6/d, which is finite for our uniform mesh subdivision scheme, and d
O(6N). Note the indexing A AN does not indicate distance from P. But there is an
arrangement of Ar where the number of triangles at a distance R is proportional to R, with
R =d, 2d, 3d

The number ci of triangles in T1 at a distance d is proportional to for tj.
Note that for some integer tj, tj d is the longest possible distance from P to triangles in Rio
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Adding the error contributed by each triangle in T1, we have

(K,] (’6) t1
0 ci" O O("4) r2 O("4 log’).

/ i=1 (i. d)2
i=1

The error contributed by each of the triangles in T2 is O(5/d:). The number of triangles
of this type at a distance d is a finite number, usually two or three; the proof is omitted.
Therefore,

yOlkdK] =cj.O O(’4)r O(log),
K i=1 i=1

where cj is either two or three. This completes the proof that

(3) EI pu)pe) o4 og)

unifoly for P a node point in the triangulation {A,u of S. (This form of proof is also
used in some of the remaining proofs of this paper.)

(b) To show (22), we first note that the eor equation for the iterated collocation solution

flu is given by

The linear system associated with this is

(33)

with

(2rr + KN)eN --tSN,

eN,i O(Vi) N(l)i) O()i) pN(l)i),
N,i IC(I PN)p(l)i) No.

The matrix of coefficients 2rr + KN is also the same as that for the linear system associated
with the collocation equation (18).

As noted earlier following (21), (2zr +/CPN)-1 is uniformly bounded for all sufficiently
large N. Also, since the iterated collocation equation can be considered a Nystr6m method,
it is a standard derivation that

11(2zr + Km)-ll _< 11(2n + EP)-II,

where the matrix norm is the standard row norm. Combining these results,

(34) 1l(2rr + K)-all _< c < oo, N > No

for some sufficiently large No and some c > 0.
Using this result with (33), and using (31) to bound I111oo, we have the desired re-

sult (22). [3

3.1. The single-layer integral. For the exterior problem, we need to evaluate the corre-
sponding single-layer integrals on the right-hand side of (5). Write

fs’ f(Q) dSQ .,m N fa f(t:(s, t))
Dstc(s, t) x Dtttc(s, t) da(35)

P- Q P- c(s, t)!K=I

where P is one of node points. Note we are including the use of the approximating surface.
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We can see that the integrand in (35) varies from singular to quite smooth. To handle this
varied behavior, we use two ways to study errors. The first case is for those Ar’s that contain
the point P, and the second case is for the remaining Ar’s.

LEMMA 3.2. Let P be a node point in AI for some K. Then

f(mx(s,t))
i/S--(-)I Dsmr(s, t) x Dtmr(s, t) do.

f flV(NK(S, t))

L P-r(s,t)
Dstr(s,t) DttK(S, t) do. O(3r),

where 8r is the diameter of Ar.
Proof. There are two cases. The first case is that P is a vertex in some Ar, and the second

case is that P is a midpoint of a side of A r.
Begin with the first case and, without loss of generality, assume that

P mr(O, 0) r(0, 0) (Pl, P2, P3).

Before proving the theorem, we show that

da O(c
P-mK(s,t)

Compute

f P-mr(s,t)
do"

[(Pl xl(S, t))2 q- (P2 x2(s, t))2 -t- (P3 x3(S, t))2] 1/2
do"

f. [sxlfo. o) + tx] O. o)) + sxO. o) + tx, o. o))

+

See (14) for xi’s. After integrating the dominant part of the above equation using polar
coordinates in the st-plane about (0, 0), we obtain

do" O(’’).
P- mr(s, t)

Now, we break the error analysis into three parts.

f(mlc(S, t))
i/S -(-s-)l DsmK(s,t) x Dtmr(s, t) da

[ fv(tr(s, t))

L P-r(s,t)
Dsr(s, t) x Dtr(s, t) do.

El + E2 -4r E3,
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with

(36) E1 f f(mK(s, t)) fV(K(S, t))
P--mK(s- DsmK(s, t) DtmK(s, t) dcr,

flV(K(S, t))
E2

P--rnK(s,t)
(I DsmK(s, t) DtmK(s,t)

(37) DsK(S, t) DttK(S, t) l) dcr,

E3
P--rnK(s,t)

(38) Dstx(s, t) DttK(S, t) lfN(K(s, t))dcr.

In equation (36),

E1 < 0(3) 0(2)
P- mK(S, t)

We can easily see that equation (37) has order three:

lEvi _< maXs.tr DsmK(s, t) x DtmK(s, t) l--IDsK(S, t) DtIK(S t)

[ fu(/c(s, t))

L P- mK(s, t)
do 0(’’()" 0(’1) O(K).

For E3, expand each x about (0, 0), and then integrate it over or. With a very lengthy
calculation, we can show that E3 is of order three. See [8].

If P is a midpoint of a side of A K, we split cr into two triangles, crl and or2, and we put the
singular point at a vertex in each of the new triangles; see Fig. 4 for the case with P rn K (/94).
We apply an affine change of variables to move again to an integral over or. Applying the first
case to these two subtriangles, we again can show the error is of order three. Thus, the error
contributed by the integral over AK, which contains P, is always of order three, whether P is
a vertex or a midpoint of a side of AK. U

In the next lemma, we examine the errors from integrating over those triangles AK which
do not contain P. Then we can combine these two lemmas and give the global error for the
single layer integration.

LEMMA 3.3. Let P be a node point, and consider all AK for which P q AK. Then

(39)

Zf f(mK(S, t))

K P--rnK(s,t)
Dsmr(s, t) x DtmK(s, t) dcr

fu(r(s, t))-- P-K(S t)K
DsK(S,t) DttK(S, t) do" O(3K),

where 8K is the diameter of AK.

Proof. Since P ’ AK, we can treat the function / P mK (S, t) as a smooth function.
All results from Lemma 3.2 and Theorems 3.3-3.7 of [8] can be applied with slight changes.
Let (39) be decomposed as E1 + + E5 where
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P

Vl

FIG. 4. Splitting triangles.

[ f(ml(S, t))[I DsmK x DtmKI--IDsg x Dtg l]
El da,

t Jr e mtc(s, t)

[f(ml(S, t))- fN(m:(s, t))] D DtXldaE2
I J e- ml(S,t)

yf [f(mx(s, t))- fN(mx(s, t))]lDsmtc x Dtmx Ida
: P m(s, t)

E3 E [f(m(s, t))- fN(m:(S, t))] Dsmx x Vtm:
da,

t P m(s, t)

[ fN(mZ((S, t)) fu(ml(S, t)) 1E4 I--S7-(-s[t) e- K(s, t) DK DtK dsdt

fa[ f(mtc(s,t)) fu(mx(s,t)) ]--E P--mtc(s t) l-[P-g(s:[ DmK x D,mg dsdt,
K

[ fN(mK(S,t)) fN(mK(S,t)) ]E5 y P-m1(-si fffi Dsm x Dtm; da.
K

The integrand of E, is 0(6/d3)+ O(’gS/d2). Using the calculation we had in
Theorem 3.1, we get that El is of order three.

For E2,

f(ml,;(s, t)) fN(mX(s, t))
[P -i-i {.1 Dsmx x Dttnx l-IDst: x Dt’IK 1} do

o(S4), fx P ml(S, t)
1
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for every K where P ’ At. Adding errors from each triangle, we have that E2 is O(5), as
we discussed in computing El.

For E3, we have that the error from

f f(mKls_,t))- fN(mK(s,t))
mK(S, t)

Dsmx x Dtmrl do-

is O(g6/dr) for every triangle. Again, following the argument in Theorem 3.1, E3 is O (’4).
Analyzing E4, we have

, , o(P )(40)
P--mK(s,t) P-r(s,t) ,d.

and

P-mr(s,t) IP-r(s,t)
fN(mr(s,t)) D=mK x DtmK do-

P--mK(s,t)

o

1 ]IP-r(s,t)
fN(mr(s,t)) D=r x DtNr I)dsdt

for each Ar. After adding up errors, E4 O (t ln").
For Es, each triangle give us an error of O(Sr/dr). When adding errors together, can-

cellation happens at every symmetric pair of triangles and errors become O(6/dar). Thus,
as we discussed in computing El, E5 is O(3). After going through El-E5, the global error
for the single-layer integral, in which P mr(s, t) is nonzero for every K, is O(3). This
result is uniform as P ranges over the node points of the triangulation. [3

Combining the above lemma, we get the following result, which gives the total error for
evaluating the single-layer integral at any node point. We use this later to assess the effect on
PN of using an approximation to the single layer.

THEOREM 3.4. Let S be a piecewise smooth surface and let P be a node point on S.
Assume the unknownfunction f Ca Si t C S), 1 J. Then

f(Q)
IP-QI

N

f f(Nr(s,t))
dSQ y

P ff(;7)] nsr(s, t) x Dtr(s, t)[ do- 0(’63).
K=I

Proof. Combine Lemmas 3.2 and 3.3. [3

3.2. Using the approximate surface. When using the approximate surface SN, the linear
system for (2) for the Dirichlet problem becomes

2JI’"N(Vi) + [2zr ’2 (vi)] "N(Vi)
N 6

+ Y’lV(Vj, r) f lj, r(s, t)
(Dsr(s, t) x Dtr(s, t)). (1) lK(S t))

K=I j=l vi tr(s, t) 13

(41) f (vi) No.

do"

For a smooth surface S, we would expect to use fiN(P) f2 (P) 2zr, thus simplifying
the above system. However, for the piecewise smooth surfaces considered in 5, we need to
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consider an approximation to g2 (P), and from the numerical examples in 4, it is also useful
to consider approximations of (P) for S a smooth surface.

Using the identity

(42) g2(P)
P-QI

we define

N 6

(43) f2u (P)
K= j= f lj, K(S, t)

(DstK x[ PD’tK)K(S,(Pt)-[3tK(s’ t))
da.

Later, in Theorem 5.2 of 5, we show that

(44) max K2(vi)- K2N(Vi) I-- O(N).
<i <No

Empirically for a smooth surface S, as shown in 4, it appears the approximation error is
actually O(), although we have not been able to prove this.

The linear system (41) is denoted here by

(45) (2zr + KN)"N gN,

with

"N,i ’ N(I)i), gN,i ; fN(Vi), i= 1 No.

When solving the integral equation (5) for the exterior Neumann problem, we also approximate
the right-hand side, now a single-layer integral, using (35). In the above framework, and
consistent with earlier notation, we write

f f(K(S’t)) DstK X DttK
dc(46) "N,i

K=I j=l vi K(S, t)

for No.
For convergence when using the approximate surface SN, we have the following theorem.

In 4, we give experimental results which suggest that the convergence results given below
can be improved.

THEOREM 3.5. Consider the integral equations (2) and (5) with solution p. Let S be a
smooth surface in R3and assume the unknownfunction p C4(S). Then

max p(vi) --’N(Vi) O(N).(47)
l<i<No

Proof We use a perturbation analysis, based on regarding the system (45) as a perturbation
of the corresponding system

(48) (2yrl + KN)PN gN,

for the projection method analyzed in Theorem 3.1 which used the exact surface S. As shown
earlier in (34), (2zr + Kv)-1 is uniformly bounded for all sufficiently large N.

The present analysis uses the result

(49) IIKN TNII O()
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with the matrix row norm. The proof of this is essentially the same as that for (44), and thus
we defer the proof of (60) to Theorem 5.2. Using (49) and the invertibility of 2rr + Kv with
the uniform boundness of (2rr + Kv)-1 for all sufficntly large N, we have by standard
arguments that the same is true for the inverse of 2r + Kv"

(50) ll(2zr + N)- <_ c < , N >_ No

for some No and some c > 0.
By straightforward manipulation of (45) and (48), we have

+ + +

The first term on the right-hand side is O(N), from (49). The second term is either zero
or O(’3N), from Theorem 3.4. When considered with Theorem 3.1, this shows the re-
sult (47).

4. Numerical examples: Smooth surt’ace case. The collocation method of 3, with the
use of the quadratic isoparametric interpolation of the surface S, was implemented with a
package ofprograms which work for a wide variety of smooth and piecewise smooth surfaces.
This package was first described in [2], [3]; it has since been updated and improved in several
ways. (Eventually the package will be made available publicly, with an accompanying user’s
manual.)

There are two crucial aspects of the practical implementation that were not discussed in

3: the calculation of the collocation integrals and the solution of the large linear systems that
often arise from the discretization. The iterative solution of such linear systems by two-grid
methods is discussed in [6], [7]; thus we restrict our attention here to the numerical integration
of the collocation integrals.

After much experimentation with other approaches, we have currently settled on the
following scheme for the numerical integration. We find that the numerical integration of the
collocation integrals is by far the most time-consuming part in solving the boundary integral
equation. One must have integrals that are sufficiently accurate to match the accuracy of the
"pure" collocation solution PN. But it is very wasteful of computing time to calculate these
integrals with more accuracy than is needed.

The collocation integrals in the matrix of coefficients of (41) are given by

(52) f K(l)i, lk(S t))lj(s, t) Dstl Dttk dr.

In this, No, j 6, and K N; tc (P, Q) denotes the kernel function
for the double layer integral operator. For the exterior Neumann problem, we also need to
evaluate the corresponding single-layer integrals

f(tl(S, t)) D.tK DttKI dcr.(53)

Recall from 2 that/ a ,5x is a one-to-one and onto parametrization of the triangle
approximating Ax. We consider two cases in evaluating (52), depending on whether vi is
inside or outside of A

If vi AK, then tc(vi, Q) is singular. We use a change of variable based on [9]. This
was introduced in [3, p. 40], where we noted that it removed all singular behavior in both the
double-layer integrals (52) and the corresponding single-layer integrals. Subsequently, we
discovered that the change of variables is equivalent to that introduced in 11 ]. Others who
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have since made use of this transformation include [13] and [21]. The latter paper carries
out a detailed analysis of the method and an extension of the transformation to other singular
integration problems arising in solving boundary integral equations.

Assuming the collocation node vi mr (0, 0), introduce the change of variables

s=(1-y)x, yx, O <_x, y <_ 1.

With this, the new integrands in (52) and (53) will be well behaved. For AK a surface with Cm

differentiability, m >_ 3, the transformed integrand for (52) will be Cm-2 times differentiable;
if the density f(Q) is m-times differentiable on A r, the transformed integrand for (53) will be
C times differentiable. We then evaluate the transformed integral using a product Gaussian
quadrature formula, with Ng nodes in both the x and y coordinates (thus using Nu2 integration
nodes). If vi mr (0, 1) or m r (1, 0), then we use an affine transformation to convert back to
the case just discussed. If vi m I,: (qj) with j 4, 5, or 6, then we divide a into two parts and
treat the integral over each part as described above. As an example, suppose vi m/ (0, .5).
See Fig. 4 for the appropriate subdivision of a, for which we use an affine transformation to
map each subtriangle onto a in such a way that the singular point occurs at (0,0).

The above change of variables is used to remove the singularity in the integration over
each triangle. For cases of N 512 faces, we have found Ng 10 to be very sufficient
to preserve the accuracy of .the collocation solution; smaller values of Ng are sufficient for
smaller values of N. Note that the number of integrals (52) with vi A x, for some and K, is
of order No, whereas the total number of integrals to be computed is of order No2. Thus when
considering operation counts, the singular integrals are the less important of the integrals (52)
to be considered.

For vi A/, the integrand in (52) is analytic, but it is increasingly peaked as the distance
between vi and zX K decreases. A method to evaluate integrals such as (52) and (53) over a is
based on (17), the quadrature rule T2:5-1 of [22]. Let an integer parameter Na > 0 be given.
If V . AK and

dist(vi, AK) <_ tN,

where 8N is the mesh size of AK as defined in (9), then integrate (52) using (17) with Nd
levels of subdivision of cr (thus dividing cr into 4Nd subtriangles, with (17) applied to the
integral over each of the corresponding subintegrals). If vi Ar and

tN <: dist(vi, AK) < 28N,

then integrate (52) using (17) with max{Nd 1,0} levels of subdivision of a. If vi q A r and

2tN < dist(vi, AK) < 3tN,

then integrate (52) using (17) with max{Na 2, 0} levels of subdivision of a. Continue with
this in the obvious way.

We have found that as N is increased to 4N, then raising Nd to Nd + is sufficient to
integrate (52) and (53) with the needed accuracy. For all of our examples, for both smooth and
piecewise smooth surfaces, the largest value ofNd that we have needed to use has been Na 2.
We have used larger values of Nd in our experiments to check the accuracy when using the
lower values of Nd. When vi q AK, other methods have been tried for evaluating (52) and
(53); for example, a method with automatic error control was described in [3] and [4]. But
the method described here has proven to be the most efficient. Nonetheless, the integrations
of (52) and (53) are still the most expensive parts of our computation, far exceeding the cost
of solving the linear system (23) for the discretized boundary integral equation.
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solid curve: 4 0, dash curve: zr/4, dot curve: zr/2

FIG. 5. Cross-sections of"squash" surface.

4.1. The surfaces. Two smooth surfaces were used in our experiments. Surface #1
(denoted by S#1) was the ellipsoid

2 Z
1.

In Tables 1-4 given below for this ellipsoid, (a, b, c) (2, 2.5, 3).
The ellipsoid is convex and symmetric. For that reason, we also devised and used a surface

which is not symmetric and which is slightly nonconvex. Surface #2 (S#2) is defined by

(x, y, z) p(, rl, ()(A, Brl, C), .2 + r/2 + (2 1,

with

P(, n, () [( --.1)2 4- 2(0 -.1)2 3(( -.1)2]/ct

and A, B, C > 0, ot >_ 5. The case we use here is ot 10 and (A, B, C) (2, 2, 1). Figure 5
gives the cross-sections of S#2 when intersecting S with vertical planes containing the z-axis,
intersecting at angles of 4 0, rr/4, rr/2 with respect to the positive x-axis. Experiments
were done with other choices of c and (A, B, C), corresponding to surfaces with a more
pronounced lack of symmetry and convexity. But in order to obtain error results with some

regularity in asymptotic behavior, we chose the parameters given above, giving the surface
illustrated in Fig. 5.

4.2. The solid angle. At all points P S, the solid angle (P) 2zr. In Table 1, we
give the approximate values of the solid angle for S#1 as computed using 2v(P) in (43).
The points P at which these are given are

1)1 (0, 0, 3), v2 (2, 0, 0), 1)3 (0, 2.5, 0),
v7 ("v/, q, 0), v8 (,v/, /3.125, 0), v9 (0, /3.125, --).

The subscripts refer to the indexing of node points used in our triangulation package. The
empirical rate of convergence is approximately O (’3). The integration parameters used were
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TABLE
Solid angle approximations on S#1 at selected 1)

E1 E2 E3 El/E2 E2/E3 E3/E4
1.52E-1 2.01E-2 2.54E-3 6.58 7.58 7.89

2 8.26E-2 1.09E-2 1.38E-3 6.64 7.58 7.89
3 1.17E-1 1.55E-2 1.96E-3 6.62 7.58 7.89
7 1.73E-1 2.35E-2 3.01E-3 8.13 7.34 7.82
8 1.47E- 2.00E-2 2.56E-3 7.55 7.36 7.82
9 2.34E-1 3.19E-2 4.09E-3 8.29 7.32 7.81

TABLE 2
Maximum errors on ellipsoid.

Ilu uNIIoo Ratio Ilu2 u2NIIo Ratio
8 1.93E-2 1.92E-2

32 1.44E-3 13.4 2.85E-3 6.7
128 9.68E-5 14.9 2.54E-4 11.2
512 6.09E-6 15.9 1.63E-5 15.6

TABLE 3
Maximum errors on surface S#2.

Ilu UNIl Ratio Ilu2 U2NIIo Ratio

8 7.26E-2 5.49E-2
32 5.40E-3 13.4 4.85E-3 11.3
128 8.70E-4 6.2 1.35E-3 3.6
512 1.11E-4 7.9 1.98E-4 6.8

Ng 10 and Nd 2. The columns El, E2, E3, and E4 denote the errors for N 8, 32,
128, 512, respectively. (Note that for a given N, the number of nodes on S is No 2(N + 1).)
Similar results for the approximate solid angle are true for S#2.

4.3. Solution of the exterior Neumann problem. The problem (3) was solved with the
normal derivative f so chosen that the true solution is known. The two cases used here are

lex/r2ul(P) -, uz(P) cos(z/r2),

with P (x, y, z) and r =1 P 1. In this case, p u; and we use u and UN in our discussion.
Tables 2 and 3 contain the maximum error at the node points for solving boundary integral
equation (5) for S#1 and S#2, respectively. The integration parameter Ng 10; for Nd, we
used 0, 1, 2, 2 for the cases N 8, 32, 128, and 512, respectively, for both S#1 and S#2.

The results in Table 2 for S#1 are consistent with an asymptotic rate for the error of O (’v)
or O (’v log’v), in agreement with the theoretical result in Theorem 3.1 for the collocation
method with the exact surface. In the case of S#2 in Table 3, the asymptotic pattern for the
maximum error appears to be O (3N); to check in more detail whether the error is truly O(N)
refer to Table 4, which gives the errors at a representative sampling of the 18 nodes used in the
coarsest triangulation of S (for N 8), along with the ratios by which these errors decrease.
The columns El, E2, E3, and E4 denote the errors for the parameter N 8, 32, 128, and
512, respectively. When looking at the individual errors, there is a pattern of an O ("4N) rate
of convergence at a large number of the points; we conjecture that with larger values of N, an
asymptotic error of O (-’v) would emerge for the maximum error.

Since these are smooth surfaces, why not use the true value of 2 (vi) 2zr, rather than
incorporating the approximation (43) into the discretization of (5)? Table 5 gives the values
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TABLE 4
Errors at representative vi on S#2for u u l.

N E2 E3 E4 El E2/E3 E3/E4
-5.26E-3 -4.77E-4 -3.14E-5 8.4 11.0 15.2

2 -4.25E-3 -2.81E-4 -1.78E-5 11.3 15.1 15.8
5 -5.41E-3 -3.28E-4 -2.24E-5 13.4 16.5 14.6
7 -3.09E-3 -8.05E-5 1.30E-5 16.9 38.4 -6.2
8 -4.58E-3 -3.80E-4 -2.62E-5 10.9 12.0 14.5
12 -5.40E-3 -4.63E-4 -3.35E-5 9.6 11.7 13.8
13 -3.16E-3 -1.52E-4 2.84E-6 16.8 20.8 -53.3
15 -2.52E-3 -7.91E-5 9.18E-6 18.2 31.9 -8.6
18 -2.51E-3 -1.51E-4 -3.04E-6 17.7 16.6 49.8

T,BLE 5
Errorsfor u u on the ellipsoid S# with use ofthe exact solid angle 2 2zr.

N Ilul UNIIo Ratio
8 9.75E-2

32 1.35E-2 7.24
128 3.26E-3 4.13
512 4.37E-4 7.45

of the maximum error at the node points vi with u u on S#1, with (Vi) 2zr at all
node points. Note that now the error is O (N), which is worse than the convergence rate of
O ("4N 1og’N) predicted by Theorem 3.1 for the solution UN.

The use of the approximation (43) forces a favorable cancellation to occur when forming
the discretized linear system (41). Another way of looking at what is happening is the follow-
ing. The matrix of coefficients (41) is forced to have 4zr as an eigenvalue, with the eigenvector
being the vector with all components equal to 1. This makes the discretized system exactly
like the original integral equation (5), in which the function u(P) --- is an eigenfunction of
the left-hand side of (5), with the eigenvalue being 4rr.

It is clearly preferable to use the approximate solid angle rather than the exact one. The
cost of using the approximation (43) is minimal, since all quantities used have been calculated
in setting up the linear system (41).

4.4. The interior Dirichlet problem. We solve the integral equation (2) for the interior
Dirichlet problem, using the same procedures described above for the exterior Neumann
problem. To complete the solution process, we must then calculate numerically the integral (1).
Letting t3N denote the approximate density function thus obtained, we must evaluate

(54) uN(A) N(Q)-va dSQ, A 6 D.

From [8], the rate of convergence will be O (’4N) when the quadrature is based on standard
symmetric numerical integration rules over the unit simplex with a sufficiently high degree of
precision, e.g., the rules (16) and (17).

Expand the integral in (54) as

(55t
k=l g

The triangulation A used here need not be the same as the one used in obtaining v, but
the two triangulations should be compatible in the sense that one is a refinement of the other.
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For those triangles Ar which are close to the field point A, the integration should be done
with more accuracy than for those triangles which are relatively far from the field point.

It has been our experience that the density function t3u can be relatively inaccurate and
quite acceptable accuracy in the solution uu(A) can still be obtained. The accuracy in the
solution uu depends much more on the accuracy of the numerical integration of (55) than on
having high accuracy in tSu. This should not be especially surprising since it is well known
that integration is a "smoothing" operation and the effect of errors in the integrand, including
/Su, are reduced. Extended examples to illustrate this are given in the technical report [4], and
we omit them here for reasons of space.

5. Collocation on piecewise smooth boundaries. As in 3, we first analyze the collo-
cation method (2zr + 79u/C)pu 79uSf for (5) by assuming the exact representation of the
surface is used in all integrations; following that, we analyze the effect of using a quadratic
interpolatory representation of the surface. For polyhedral boundaries, there is no need to
approximate the boundary, and these are the cases analyzed in 10] and 17].

As in [2], we use a stability analysis based on Wendland [23]; then as in 3, we analyze
the discretization error for the iterated collocation solution-( p).

In [23], a piecewise constant collocation method is defined and analyzed. The proofs given
there generalize easily to our collocation method based on quadratic isoparametric interpola-
tion. In his paper, Wendland makes several assumptions about the piecewise smooth surface S,
in addition to those described in 2. Assumption V3 of his paper states that at all points of S,
either the inner or the outer tangent cone must be convex" assumption V4 states that all edges
of S must be piecewise continuous and must not contain any cusps. Within this setting, it is
straightforward to prove the following theorem.

THEOREM 5.1. Let S satisfy the assumptions given above and earlier in 2; and let S
also satisfy the assumptions V3 and V4 of [23], as discussed above preceding the theorem.
Moreover, assume

(56)
5
-sup 27r f2 (P) I< 2zr.
3 PeS

Let 79u denote the interpolatory projection of (12), based on quadratic isoparametric inter-
polation over the triangulation {AK K 1 N}. Thenfor all sufficiently large N, say
N > No, andfor some c <

(57) 11(2zr + T’N/C)- _< c, N >_ No.

Moreover, this implies that

(58) 11(2zr + ETN)- c, N >_ No

for the error

(59) P PN < O (3N
Proof. We refer to the derivation in [23]. Essentially, the problem of analyzing

(27r + T)NtC)pN Pug is divided into two parts. Begin by decomposing the surface S
into two subdomains based on distance to an edge or vertex of S. Let T denote the union of
all edges and vertices of the surface S. For a given E > 0, let

S1 {P E S dist(P, T) < E}



PIECEWlSE POLYNOMIAL COLLOCATION FOR BIE 673

and let $2 be the closure of S S. Consider spaces C(Si), 1, 2, and define integral
operators 1Cij C(Si) --+ C(Sj) by

fsP(Q)..-u0 [ ] dSQ+[2r-(P)]p(P)’ P6Si’p6C(Sj)’IP-Q’(]CijP)(P)

The final term [2zr (P)]p(P) needs to be included only when j 1. For (i, j)
(1, 1), the operators Eij are compact.

Define C(Si) C(Sj). Then the original boundary integral equation (5) for the
exterior Neumann problem, (2 + E)p Sf, and the collocation equation for its solution,
(2 + PNE)PN PNSf, can be reformulated, respectively, as

21 2 + 22 P2 g2

2N21 2r + 2N22 P2N (Ng)2

We assume that the inteolation operator Pu is defined so that PNP Si depends on p at only
the node points within Si. Then we can define i C(Si) C (Si) by

(61) PiNP PNP S, p C(Sz), 1, 2.

Using the methods of [23], it is straightforward to show that if e is chosen sufficiently
1-1

small, then 2 + C(SI)ontOC(S1), and moreover, for all sufficiently large N,

(62) ll(2 + PNa)-II c < .
Using this, operate on (60) and (61) to obtain

21 I + 22 2 g2

[ I (2+INI1)-IIN12][PlN]2N22 PZN

[ (2+INll)-I(INg)I

We write these equations in the simpler forms

(63) (I+) r, (l+u)u r,

respectively, with [p, p2]T, N [PIN, P2N]T.
The operator X X is compact and the family {u is a pointwise-convergent and

collectively compact family, converging pointwise to. With the known invenibility of2+E
on C(S), we can obtain the invenibility of I + . Using the theory of collectively compact
operator approximations, we have the existence and uniform boundedness of (I + N)- for
all sufficiently large N; this leads directly to the result (57) asserted in the theorem. The result
(58) follows from the identity (21) given earlier.

For convergence of the collocation solutions {Pu }, the standard result

(64) lip Pull 5 1[(2 + PuE)-IIIIp Pupll

implies lip PNII O() from the bound (13) for intewolation eor.
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The condition (56) and the other assumptions of [23] on the solid angle are quite restrictive,
and it is clear from the numerical examples that they are not necessary in practice. Other
somewhat less restrictive assumptions on S are given in [14], [15], [17]-[19], but for our proof
of stability, we still require (56). Our results on rates of convergence assume only the stability
results (57) and (58), and do not depend on how they are obtained. Other tools for proving
stability are given in 10] and 12], and it may be possible to adapt them to our use of piecewise
polynomial isoparametric interpolation. Again, they consider only polyhedral surfaces and
thus do not need to approximate the surface.

We cannot show superconvergence of 3N at the node points (which was shown in Theo-
rem 3.1 for S a smooth surface.) For S only piecewise smooth,/C is no longer a smoothing
operator, and that appears to prevent superconvergenceo

5.1. Using the approximate surface. In practice, we solve the linear system (41), which
uses the approximate surface SN. We also approximate the solid angle fi (P) by the quantity
fiN(P) defined in (43).

THEOREM 5.2. Let S be a piecewise smooth surface, and let P be a node point on S. Then

fi(P)- fiN(P) O(2N).
Proof. We first compute the error contributed by AK which contains P. Without loss of

generality, assume P mg(O, 0). Let

P (Pl, P2, P3) mK (0, 0) K (0, 0)

We break error over AK into two parts:

E1 I(DsmKxDtmK)" P -ml(S,t)
P-mc(s,t) 13

(65) (DstX x DttK)
P tK(s, t)
P-nx-(-it) 13

dsdt

and

E2 f[(DstK x DtK)
P -ttc(s,t)
P rn/(s, t) 13

(66) (DstK x DttK)
P-Nx(s,t) ]P-/((s,t) 13

We now manipulate the first part of the integrand of (65).

(Dsmx(s, t) X Dtmx(s, t))
P rn 1((s, t)
P--mg(s,t) 13

(67)
2 3 3 2 3xtl 3 2 2 XXsXt) (pl x P2 X2, P3(X X X X X X X X X

[(Pl xl)2 + (P2 x2)2 -- (P3 x3)2]3/2

Using the Taylor error formula for the x about (s, t) (0, 0), the numerator of equation (67)
becomes

23 32 31 13 12 21
X X

2(XsX XsX XsX XsXt XsX XsX (Pl P2 P3 X3)
12 21 tX3st .3vt 32 (s2Xlss 2stXst 12xltt)(X X X X ) (S2X3ss -t- 2s 2x3tt) -I- (x2t x3 x x -t- --3 3 (s2x2ss 2slX2st t2x2tt -t- O(’5K)t_ (X Xs Xt Xs ._
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Computing the corresponding part of the second term of (65) with the same formula as
we had above, we get

(DstK x DttK) (P tK(S, t))
2 2 23 32 21 2xltt(xlt x X X )(S X, + 2StX3t + t2x3tt) -t- (Xt Xs23 Xt X, )(S X, + 2StX, +
3 3 2 2 tX2st t2Xt2t) o(SK).(68) + (X X, xlt + 2Sx,)(s x,, + +

Thus,

(DsmK DtmK) (P mK(S, t)) (DsK DttK) (P tK(S, t)) o(SK).
Expanding each x about (0, 0), the denominator of (67) is

[(pl xl)2 -t- (p2 x2)2 -k- (p3 x3)2]-3/2 O(I 8K I-3).

Then,

(Dsml,: x DtmK) (P mK(S, t)) (DstX x Dttl,:) (P K(s, t))
P- mK(s, t)13

do"

(69) 0 (’2).
Note there are at most six triangles containing the node point P, and the total error contributed

’sfrom the A x which contain P is O (’).
To analyze E2, we need to know the error from the following:

P--mK(s,t) 13 P--K(s,t) 13

P rn :(s, t) P /((s, t) P- mlc(S,t)I2

1
+ +

(I P mK(s, t) I)(I P K(S, t) I) P--x(s,t) 12

O(8K)" O(’2) O(’1).
Then, from the above result and (68), we have the following error analysis for E2:

(70) [(DstK x DtK) (P tK(S, t))
P mK(s, t) 13

o(X;?)
P-(s,t) 13

Combining (69) and (70), we complete the proof of the first step, for A K containing P.
Consider errors contributed by all A for which P ’ AK. Since P ’ A, we can again

treat the function 1/ P rn (s, t) 13 as a smooth function. This proof will have two parts,
as for that of Theorem 3.1, and we use results from the latter. Let dK, d, and r be the same
as in Theorem 3.1.

Decompose the second part of proof as E1 and E2, the same as above in (65) and (67),
respectively. In the previous part, we assumed that P rnK (0, 0); and we now assume

P # mx(s, t) (s, t) r.
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Expand each x about (s, t) (0, O) and compute

(DsmK DtmK) (P mK(s, t)) (DsK DtK) (P K(S, t))

E4(s, t; v" Vl, v3 ’1) + E5(s, t; v" v, v’3 ’l) + O (’6).
E4 is a homogeneous polynomial of degree three in s and t, and its coefficients are

O(’4 dx). Integrating E4 over cr yields zero. E5 is also a polynomial in s and t. Its
coefficients are O (’5), and E5 has the "odd function" property

Thus, cancellation occurs.
When examining El, we need to expand the function P mid(s, t) 1-3 about (s, t)

(0, 0). Then we obtain

(Dsm: x Dtml) (P mid(s, t)) (Dstl x DttK) (P t(s, t))
P- m:(s, t)13

E4 + E5 + O(’)
[(Pl xl(0, 0))2 q- (P2 x2(0, 0))2 ’1- (P3 x3(0, 0))2]3/2

(71) (E4 + E5 + O(’6r))e + O
,d4r ,],

where e is a polynomial in s and and its coefficients are 0 (x/d4r). Integrating (71) over
a, the error contributed by each A is O (5r/d3r) + 0 (g6r/d4r). Then, using earlier methods,
the global error E can be shown to be O (’2).

For computing E2, we first calculate

P mt,:(s, t) 13 P tK(S, t) 13

P rn :(s, t) P-t(s,t) P- mK(S, t)12

(72) + +
(I P- mK(s,t) I)( P- tK(S,t) I) P /(s, t) 12

Using (40), (72) is O(3/d). 0(1/d) 0 ("g3/d4). Therefore, the integrand of E2 is

1
(Dstl x Dttl) (P ttc(s, t))

P mlc(S, t) 13 ]P--K(s,t) 13

Thus, the error contributed by each A: is O(5x/d3x), and E2 is of order two. This proves the
theorem. An almost identical proof also shows the result (49) used in the proof Theorem 3.5;
we omit the details. [3

The above theorem shows the difference between the value of the solid angle and the
approximate value of the solid angle. This result is not as good as desired. For smooth
surfaces, the empirical rate seems to be O(), from the example of Table 1 and other similar
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examples. But the empirical results for piecewise smooth surfaces, given in the following
section, do not clearly indicate a convergence rate.

THEOREM 5.3. Let S be a piecewise smooth surface, satisfying the assumptions of 2,
the hypotheses of [23] as descried earlier, and the solid angle assumption (56). Let p be a
solution of (2) or (5), with p C(S) tq CSj), j J. Let lV be the solution of the
system (41) which uses the approximation SN for S. Then

max p(vi) --’fiN(Vi) 0(’2)
<i <No

Proof. This is proven by combining the techniques used in the proof of Theorem 3.5,
together with the results of Theorem 5.1 for the collocation method for (2) or (5) when the
original surface S is used. We omit the details

6. Numerical examples: Piecewise smooth surface ease. The collocation integrals
in the linear system (41) were evaluated with the same type of numerical integration used
when S was a smooth surface. The two-grid iteration method for solving the linear system
required a modification from that used for the smooth surface case, and this is explored in [6].
Below we give examples for several piecewise smooth surfaces to empirically study the rate
of convergence of the projection method and illustrate some of the results of 5. Since we are
solving (5), we replace p with u.

Note that in our examples, the true solutions u(P) are all smooth functions when P is off
the boundary, and they are piecewise smooth on the boundary. In contrast, the presence of a
piecewise smooth boundary usually leads to solutions that are ill behaved in a neighborhood
of all edges and comers of the surface S. To deal with such solutions, a graded triangular
mesh is needed. A theory describing the form of grading needed for Galerkin’s method has
been developed recently in [10]; a theory for collocation methods is described in [17]. These
results are all limited to polyhedral boundaries.

6.1. The surfaces. We describe three surfaces, two of which are polyhedral. The first
surface (S#1) is an elliptical paraboloid with a cap:

+ =z, O<z<c,

+ _<c, Z-- C.

The second surface (S#2) is the tetrahedron

x y z ](x,y,z) l-+ +- < 1; x,y,z>O
a

The third surface (S#3) is an "L-block;’ described as follows. Define

L0 [0, 1] x [0, 2] t_J [0, 2] x [0, 1] C R2,

Do [0, 1] x L0 C R3,

D {(ax, by, cz) (x, y, z) Do},

and let S be the boundary of D. With all three surfaces, the constants a, b, and c are positive.
Surface #1 was chosen to illustrate the use of a curved surface, so that the use of the

interpolatory approximate surface S would be nontrivial. Surface #2 encloses a convex region
and all boundary points satisfy the hypotheses of [23] although the angle assumption (56) is



678 K. ATKINSON AND D. CHIEN

TABLE 6
Solid angle approximations on an elliptical paraboloid at selected vi.

(Vi) El E2 E3 E4
2r 2.35E-3 -8.43E-6 1.52E-8 -2.30E-8

2 r/2 1.28E- 1.99E-2 9.08E-3 3.33E-4
6 2rr 1.92E-2 -7.82E-7 1.16E-8 -8.07E-8
7 2rr 6.51E-1 5.69E-2 -3.95E-4 -2.59E-3
8 rr/2 2.56E- 1.59E- 4.08E-2 1.00E-2
15 2zr 1.69E- 1.72E-4 4.80E-8 1.38E-7

not satisfied. Surface #3 is also polyhedral, but now it encloses a nonconvex region. Moreover,
some of the angles on the surface do not satisfy the assumption V3 of [23]. (V3 states that at
each point of the boundary, either the interior or the exterior tangent cone must be convex.) For
example, the tangent cones at (x, y, z) (0, 1, 1) and (1,1,1) do not satisfy V3. Working with
S#3 allows us to test whether or not the assumption V3 is necessary empirically. However,
this surface does satisfy the assumptions of 14], which extends the earlier results of [23] to a
slightly larger class of surfaces, albeit in a modified function space.

6.2. The solid angle. We again use the approximation (43) to approximate the interior
solid angle f2 (v) at points v 6 S, thus forcing all rows of the coefficient matrix for the linear
system (41) to equal 4rr. Results for an elliptical paraboloid (S#1) are given in Table 6 at the
following representative nodes:

vl (0, 0, 0), v2 (2, 0, 1), 136 (0, 0, 1),

vv (1, 0, .25), v8 ("V/-, ,v/, 1), o15 (1, 0, 1).

The parameters used for the surface were (a, b, c) (2, 2, 1); and the integration parameters
were Ng 10 and Nt 0, 1, 2, 2 for N 8, 32, 128, 512, respectively.

In Table 6, some of the entries have a rapid decrease in size as N increases, and then the
error stops decreasing and remains around 10-7 to 10-8. It seems likely that the latter is due
to the limited accuracy in the numerical integration method, although we have not tested this.
In general, there appears.to be no pattem to the rate at which the error decreases. The case of
f2 (138) is of interest since the error in this case is much larger than for the other cases, again
for unknown reasons. According to Theorem 5.2, the errors should converge with a rate of at
least O(), but this seems to be the case only for the node 138.

The results for a polyhedral surface were much better. Table 7 contains results for the
L-block (S#3) at the following representative nodes:

vl (0, 0, 0), vv (0, 0, 1), v9 (0, 1, 1),

(73) v17 (.5, 0, 1.5), 1)20 (.5, 0, 1.5), 1333 (.5, 1, 1).

There is no approximation ofthe surface in this case, and thus all errors are due to the numerical
integration being used. The resulting errors are very small.

The parameters for the L-block are (a, b, c) (1, 1, 1); for the integration parameters,
we used N 0, 1, 2 for N 28, 112, 448, respectively. Note that in this case, there are no
singular integrals because the double-layer kernel function K (P, Q) is identically zero when
P and Q belong to the same planar surface. The columns E 1, E2, and E3 denote the errors
at the given 13i, for N 28, 112, 448, respectively.

6.3. Solution of the exterior Neumann problem. We begin with the solution of (3) for
the elliptical paraboloid (S#1). The problem (3) was solved with the normal derivative f
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TABLE 7
Solid angle approximations on an L-block at selected 1)i.

f2(vi) E1 E2 E3
rr/2 -9.81E-5 -2.39E-6 -2.30E-8

7 zr 3.59E-4 3.95E-6 3.40E-8
9 3at/2 5.60E-4 5.53E-6 4.10E-8
17 2zr 1.88E-2 2.88E-6 -4.42E-7
20 2rr 1.87E-2 1.03E-6 -3.72E-7
33 3zr -3.36E-2 1.01E-5 -6.68E-7

TABLE 8
Maximum errors on an elliptical paraboloid.

N Ilul UlNIIoo Ratio Ilu2 uzv IIoo Ratio
8 2.89E-2 6.87E-2

32 7.26E-3 3.98 1.32E-2 5.23
128 2.75E-3 2.65 4.47E-3 2.94
512 8.73E-4 3.15 1.46E-3 3.06

TABLE 9
Errors ul uN at the selected points (74) on an elliptical paraboloid.

E2 E3 E4 El E2/E3 E3/E4
-6.50E-3 -2.12E-3 -4.87E-4 4.45 3.07 4.35

2 -1.62E-3 -3.16E-4 -4.01E-5 1.49 5.13 7.88
6 -7.26E-3 -1.21E-3 -1.39E-4 1.07 5.99 8.71
7 -6.05E-3 -9.28E-4 -1.19E-4 2.92 6.16 8.23
8 -2.45E-3 -4.42E-4 -5.69E-5 1.75 5.53 7.76
15 -5.23E-3 -8.15E-4 -9.19E-5 0.80 6.42 8.87

chosen from the true solution u. The two cases used were
1 1

ul(x, y,z) - u2(x, y,z) -exp(x/r2)cos((z 1/2c)/r2),
with r =1 (x, y, z) (0, 0, 1/2c) 1.

Table 8 contains the maximum errors at the node points, for (a, b, c) (2, 2, 2). The
integration parameters used were Ng 10 and Nd 0, 1, 2, 2 for N 8, 32, 128, 512,
respectively. To better understand the behavior of the error, Table 9 contains the errors for
u 1U at the following representative vertices vi

v (0, 0, 0), v2 (/-, 0, 2), 06 (0, 0, 2),

(74) 1)7 (Vc, 0, .5), v8 (2, 2, 2), vl5 (x/, 0, 2).

The nodes 1)2 and v8 are on the edge at z 2, the nodes Vl and v8 are on the lateral subsurface,
and the nodes v6 and v5 are in the interior of the top subsurface. Again, the notation E 1, E2,
E3, E4 denotes the error for N 8, 32, 128, 512, respectively.

On the basis of Table 8, the rate of convergence might be either O (3N) or O (2N), although
Theorem 5.3 implies that the order of convergence should be at least O(N) when the true
solution u(P) is a smooth function on each smooth section of the surface S. By examining
.the errors given in Table 9 at a representative set of node points, it seems likely that the order
of convergence for Ilu UNII is higher, probably O(N).

We give results for the simplex S#2, with (a, b, c) (3, 3, 3). The Neumann data f was
chosen from the true solutions

lc)/r2)u(x, y, z) -, uz(x, y, z) -exp((x 1/4a)/r2) cos((z
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TABLE 10
Maximum errors on a simplex.

N I1 UNII Ratio Ilu2 u2Nllo Ratio
4 4.49E- 2.17
16 2.16E-2 20.8 7.50E-1 2.89
64 1.08E-2 2.00 1.06E- 7.08
256 5.79E-4 18.6 1.96E-2 5.41

TABLE 11
Maximum errors on an L-block.

N Ilul uNII Ratio Ilug. U2NIIo Ratio
28 2.58E-2 6.10E-1
112 1.53E-3 16.9 7.56E-2 8.07
448 2.10E-4 7.29 3.69E-3 20.5

TABLE 12
Errors in u IN (l)i at representative points on L-block.

E1 E2 E3 E2/E3
-7.51E-3 -7.71E-5 -3.27E-6 23.6

7 -8.49E-4 -7.75E-5 -4.19E-7 185.0
9 -9.83E-3 -3.82E-4 1.70E-5 22.6
17 -1.11E-3 2.58E-4 2.06E-5 12.6
20 7.22E-4 3.88E-4 3.06E-5 12.7
33 -2.58E-2 -1.53E-3 -9.26E-5 16.5

with r =1 (x, y, z) (a, b, c) I. The integration parameter used was Nd 0, 1, 2, 3 for
N 4, 16, 64, 256, respectively. No singular integrations were needed because the surface
was piecewise planar for the reasons discussed above in connection with the computation of
the solid angle for the L-block.

The results are given in Table 10. After analyzing them, one can say only that the order of
convergence seems to be at least O (’’2). From Theorem 5.1, the error in this case is O (’3),
provided the stability result (57) is known to be true

The third set of examples is for the L-block, with (a, b, c) (1, 1, 1). The true solution
used is

U l(X y,z)--
1

-, u2(x, y, z) exp((x 1/2a)/r cos((z 1/2c)/r2),

with r =l (x, y, z) l(a, b, c) [. The integration parameter used was Na 0, 1, 2 for
N 28, 112, 448, respectively. No singular integrations were needed because the surface
was piecewise planar, for the reasons discussed earlier. The maximum errors at the node points
are given in Table 11..Table 12 lists the errors at the individual nodes of (73) to give a more
complete picture of the behavior of the error. The quantities E 1, E2, E3 represent the error
for N 28, 112, 448, respectively.

From Theorem 5.1, the error in this case is O(N), provided the stability result (57) is
known to be true. The errors in Table 11 are insufficient to predict an order of convergence,
although it appears to be O() or faster. From Table 12, the errors appear to be of order
O("v), if one is to choose an integer power for the order. Recall that this surface does
not satisfy the assumption V3 of [23] (the point v9 violates the assumption). Clearly, our
results indicate that this assumption is an artifact of the method of proof and is unnecessary
in practice.
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